Details

  • Original publication:

    Colli, M.L., Ramos-Rodríguez, M., Nakayasu, E.S. et al. An integrated multi-omics approach identifies the landscape of interferon-α-mediated responses of human pancreatic beta cells. Nat Commun 11, 2584 (2020). https://doi.org/10.1038/s41467-020-16327-0

  • Contents: Analyses and figures contained in this document correspond to the following figures/sections of the original publication:

    • Results: “mRNA and protein modules regulated by interferon-\(\alpha\)”.
    • Figure 4: Weighted correlation network analysis (WGCNA) identifies IFN\(\alpha\)-regulated mRNA and protein modules. Panels d and e.

Open chromatin in mRNA–protein modules

Association of chromatin accessibility with mRNA–protein modules

ATAC-seq-identified open chromatin regions were linked to gene transcription start sites (TSSs) in a 40 kb window. These genes and their open chromatin regions were associated to the modules of DEG and DAP.

load("../data/IFNa/clusters_RNAProt/gene-protein_granges.rda")
load("../data/IFNa/ATAC/diffAnalysis/res_2h_granges.rda")
res.2h.gr <- res.gr
load("../data/IFNa/ATAC/diffAnalysis/res_24h_granges.rda")
res.24h.gr <- res.gr

## Annotate to 40kb window
win <- 40000
gp.prom <- promoters(gp, upstream=win/2, downstream=win/2)

hits.2h <- findOverlaps(res.2h.gr, gp.prom)
hits.24h <- findOverlaps(res.24h.gr, gp.prom)

anno.2h <- cbind(data.frame(res.2h.gr)[queryHits(hits.2h),c(6,8,12:13)],
                 data.frame(gp.prom)[subjectHits(hits.2h),c(6:11)])
anno.24h <- cbind(data.frame(res.24h.gr)[queryHits(hits.24h),c(6,8,12:13)],
                 data.frame(gp.prom)[subjectHits(hits.24h),c(6:11)])

## Melt data.frames
load("../data/IFNa/ATAC/diffAnalysis/res.2h.rda")
load("../data/IFNa/ATAC/diffAnalysis/res.24h.rda")

anno.2h <- dplyr::left_join(anno.2h, res.2h.df[,c(1,8:15)])
anno.2h$log2FoldChange[is.na(anno.2h$log2FoldChange)] <- 0
anno.2h$mean.ctrl <- unlist(apply(anno.2h[,11:14], 1, mean))
anno.2h$mean.ifn <- unlist(apply(anno.2h[,15:18], 1, mean))
anno.2h <- anno.2h[,c(1:10,19:20)]
anno.2h.m <- reshape2::melt(anno.2h,
                            id.vars=1:10,
                            value.vars=11:12,
                            value.name="counts",
                            variable.name="treatment")
anno.2h.m$treatment <- gsub("mean.", "", anno.2h.m$treatment)

anno.24h <- dplyr::left_join(anno.24h, res.24h.df[,c(1,8:15)])
anno.24h$log2FoldChange[is.na(anno.24h$log2FoldChange)] <- 0
anno.24h$mean.ctrl <- unlist(apply(anno.24h[,11:14], 1, mean))
anno.24h$mean.ifn <- unlist(apply(anno.24h[,15:18], 1, mean))
anno.24h <- anno.24h[,c(1:10,19:20)]
anno.24h.m <- reshape2::melt(anno.24h,
                            id.vars=1:10,
                            value.vars=11:12,
                            value.name="counts",
                            variable.name="treatment")
anno.24h.m$treatment <- gsub("mean.", "", anno.24h.m$treatment)

The enrichment for gained open chromatin regions was then evaluated using Chi-squared tests.

files <- list.files("../data/IFNa/clusters_RNAProt/",
                    pattern="^cluster*", full.names=TRUE)

mod <- lapply(files, read.csv, stringsAsFactors=F)
names <- pipelineNGS::getNameFromPath(files, suffix=".csv", prefix="cluster")

mod.comb <- do.call(rbind, mod)
mod.comb$cluster <- unlist(mapply(rep, names, each=sapply(mod, nrow)))
colnames(mod.comb)[1] <- "external_gene_name"

anno.2h <- dplyr::left_join(anno.2h, mod.comb[c(1,6)])

chisq.test(table(anno.2h$cluster, anno.2h$type))

    Pearson's Chi-squared test

data:  table(anno.2h$cluster, anno.2h$type)
X-squared = 15.583, df = 4, p-value = 0.003633
ggplot(anno.2h[!is.na(anno.2h$cluster),], 
       aes(cluster, ..count.., fill=type)) +
  scale_fill_manual(values=c("gained"="dark green",
                             "lost"="dark red",
                             "stable"="grey"),
                    name="Chromatin Type") +
  geom_bar(lwd=0.7, color="black") +
  ylab("# Regions") +
  theme(legend.position="top",
        axis.text.x=element_text(angle=30, hjust=1))
Type of OCRs associated to each RNA-Prot module.

Figure 1: Type of OCRs associated to each RNA-Prot module.

Characterization of TF motifs found in module #2

As module #2 (Rna1Prot5) showed significant enrichment of gained OCRs, a de novo motif analysis was performed to determine the TF motifs present in such ATAC-seq regions.

library(maRge)

deNovoMotifHOMER(bed="gainedATAC_RNA1Prot5.bed",
                 path_output=file.path(out_dir, "motifs_gainedATAC-RNA1Prot5"),
                 path_homer="~/tools/homer/")
htmltools::includeHTML(file.path(out_dir, "motifs_gainedATAC-RNA1Prot5/homerResults.html"))

Homer de novo Motif Results (motifs_gainedATAC-RNA1Prot5/)

Known Motif Enrichment Results
Gene Ontology Enrichment Results
If Homer is having trouble matching a motif to a known motif, try copy/pasting the matrix file into STAMP
More information on motif finding results: HOMER | Description of Results | Tips
Total target sequences = 55
Total background sequences = 49704
* - possible false positive
RankMotifP-valuelog P-pvalue% of Targets% of Background STD(Bg STD) Best Match/DetailsMotif File
1 G T C A A T C G A C G T A C G T A C G T A G T C C G T A A T C G A C G T A C G T A C G T A G T C 1e-26-6.082e+0145.45%2.16%114.3bp (175.5bp)IRF1(IRF)/PBMC-IRF1-ChIP-Seq(GSE43036)/Homer(0.959)
More Information | Similar Motifs Found
motif file (matrix)
2 * A G T C A G T C A G C T A G C T A T G C A G T C C G T A A G T C G T A C A G T C 1e-8-1.847e+0123.64%3.08%255.1bp (176.7bp)Egr2(Zf)/Thymocytes-Egr2-ChIP-Seq(GSE34254)/Homer(0.666)
More Information | Similar Motifs Found
motif file (matrix)
3 * A C G T C G T A A C T G A T C G C G T A C T G A T C G A G A C T T A G C G C T A T G A C G T A C 1e-6-1.499e+0127.27%5.73%215.6bp (177.4bp)REL/MA0101.1/Jaspar(0.786)
More Information | Similar Motifs Found
motif file (matrix)
4 * T A C G G T A C C G A T C A T G A T G C A G C T C A T G C G T A C A G T A G T C 1e-5-1.286e+0127.27%6.79%175.5bp (181.2bp)Ascl2/MA0816.1/Jaspar(0.741)
More Information | Similar Motifs Found
motif file (matrix)
5 * A C T G A C G T C G T A C G T A G T A C A G C T C G T A C T A G 1e-4-1.094e+0127.27%7.96%292.8bp (177.2bp)HMBOX1/MA0895.1/Jaspar(0.865)
More Information | Similar Motifs Found
motif file (matrix)
6 * A C T G A G C T C G T A C G A T G T C A C G T A A C G T A C T G A T G C G T C A A G T C G T A C 1e-4-1.052e+017.27%0.31%50.2bp (168.1bp)PB0137.1_Irf3_2/Jaspar(0.598)
More Information | Similar Motifs Found
motif file (matrix)
7 * G T A C A G T C G T A C C G A T G T A C A G T C A C G T A T C G A C G T A T G C 1e-4-1.015e+0118.18%3.81%161.2bp (175.0bp)Ets1-distal(ETS)/CD4+-PolII-ChIP-Seq(Barski_et_al.)/Homer(0.733)
More Information | Similar Motifs Found
motif file (matrix)
8 * C G T A A C T G A C T G A C T G A C T G A G T C A C G T A C T G A G T C A C T G A C T G A C G T 1e-2-6.114e+001.82%0.01%17.1bp (116.8bp)PB0110.1_Bcl6b_2/Jaspar(0.629)
More Information | Similar Motifs Found
motif file (matrix)
9 * A T C G C T G A A G T C A G T C A G T C A C T G C G T A A C T G 1e-2-5.656e+0014.55%4.59%122.1bp (171.2bp)PB0138.1_Irf4_2/Jaspar(0.667)
More Information | Similar Motifs Found
motif file (matrix)


sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18362)

Matrix products: default

locale:
[1] LC_COLLATE=Spanish_Spain.1252  LC_CTYPE=Spanish_Spain.1252   
[3] LC_MONETARY=Spanish_Spain.1252 LC_NUMERIC=C                  
[5] LC_TIME=Spanish_Spain.1252    

attached base packages:
 [1] grid      parallel  stats4    stats     graphics  grDevices utils    
 [8] datasets  methods   base     

other attached packages:
 [1] DESeq2_1.29.7               SummarizedExperiment_1.19.6
 [3] DelayedArray_0.15.7         matrixStats_0.56.0         
 [5] Matrix_1.2-18               Biobase_2.49.0             
 [7] ComplexHeatmap_2.5.3        dplyr_1.0.0                
 [9] kableExtra_1.1.0            cowplot_1.0.0              
[11] ggplot2_3.3.2               GenomicRanges_1.41.5       
[13] GenomeInfoDb_1.25.8         IRanges_2.23.10            
[15] S4Vectors_0.27.12           BiocGenerics_0.35.4        
[17] workflowr_1.6.2            

loaded via a namespace (and not attached):
 [1] bitops_1.0-6           fs_1.4.2               bit64_0.9-7.1         
 [4] webshot_0.5.2          RColorBrewer_1.1-2     httr_1.4.2            
 [7] rprojroot_1.3-2        tools_4.0.0            backports_1.1.8       
[10] R6_2.4.1               DBI_1.1.0              colorspace_1.4-1      
[13] GetoptLong_1.0.2       withr_2.2.0            tidyselect_1.1.0      
[16] bit_1.1-15.2           compiler_4.0.0         git2r_0.27.1          
[19] rvest_0.3.6            xml2_1.3.2             labeling_0.3          
[22] bookdown_0.20          scales_1.1.1           readr_1.3.1           
[25] genefilter_1.71.0      pipelineNGS_0.0.0.9000 stringr_1.4.0         
[28] digest_0.6.25          rmarkdown_2.3          XVector_0.29.3        
[31] pkgconfig_2.0.3        htmltools_0.5.0        highr_0.8             
[34] rlang_0.4.7            GlobalOptions_0.1.2    rstudioapi_0.11       
[37] RSQLite_2.2.0          farver_2.0.3           shape_1.4.4           
[40] generics_0.0.2         BiocParallel_1.23.2    RCurl_1.98-1.2        
[43] magrittr_1.5           GenomeInfoDbData_1.2.3 Rcpp_1.0.5            
[46] munsell_0.5.0          lifecycle_0.2.0        stringi_1.4.6         
[49] yaml_2.2.1             zlibbioc_1.35.0        plyr_1.8.6            
[52] blob_1.2.1             promises_1.1.1         crayon_1.3.4          
[55] lattice_0.20-41        splines_4.0.0          annotate_1.67.0       
[58] circlize_0.4.10        hms_0.5.3              locfit_1.5-9.4        
[61] knitr_1.29             pillar_1.4.6           rjson_0.2.20          
[64] geneplotter_1.67.0     reshape2_1.4.4         XML_3.99-0.5          
[67] glue_1.4.1             evaluate_0.14          png_0.1-7             
[70] vctrs_0.3.2            httpuv_1.5.4           gtable_0.3.0          
[73] purrr_0.3.4            clue_0.3-57            xfun_0.16             
[76] xtable_1.8-4           later_1.1.0.1          survival_3.2-3        
[79] viridisLite_0.3.0      tibble_3.0.3           AnnotationDbi_1.51.3  
[82] memoise_1.1.0          cluster_2.1.0          ellipsis_0.3.1