Details

  • Original publication:

Ramos-Rodríguez, M., Raurell-Vila, H., Colli, M.L. et al. The impact of proinflammatory cytokines on the β-cell regulatory landscape provides insights into the genetics of type 1 diabetes. Nat Genet. 51, 1588–1595 (2019) https://doi.org/10.1038/s41588-019-0524-6

  • Contents: Analyses and figures contained in this document correspond to the following figures/sections of the original publication:

    • Results: “Proinflammatory cytokines impact the β-cell chromatin landscape”.
    • Figure 1: “Proinflammatory cytokine exposure causes profound remodeling of the \(\beta\)-cell regulatory landscape”. Panel b.
    • Extended Data Figure 1: “Chromatin characterization of human pancreatic β cells exposed to pro-inflammatory cytokines”. Panels a to g.

Analysis of ATAC-seq data

Quality control

Run Rscript for generating the necessary quality control measures.

Rscript code/CYT_QC_ATAC.R
load("../data/CYT/ATAC/QC/ATAC_stats.rda")
load("../data/CYT/ATAC/QC/QC_scores.rda")

stats <- dplyr::left_join(stats, txt)

lib <-
  ggplot(stats,
       aes("Lib Size",
           sampleID)) +
  geom_tile(aes(fill=total_reads),
              color="black", size=1) +
  geom_text(aes(label=round(total_reads/1e6, 1))) +
  scale_fill_gradient(low="white",
                      high="purple3",
                      limits=c(0, max(stats$total_reads)),
                      breaks=c(0, max(stats$total_reads)),
                      labels=c("0", "Max"),
                      name="Library size (x10^6)") +
  guides(fill=guide_colourbar(ticks=FALSE,
                              frame.colour = "black",
                              frame.linewidth = 1)) +
  theme(axis.line.x = element_blank(),
        axis.ticks.x = element_blank(),
        axis.title = element_blank())

align <-
  ggplot(stats,
         aes("% Align",
             sampleID)) + 
  geom_tile(aes(fill=alignment_rate),
            color="black", size=1) +
  geom_text(aes(label=round(alignment_rate, 1))) +
  scale_fill_gradient(low="white",
                      high="darkorange3",
                      limits=c(0, max(stats$alignment_rate)),
                      breaks=c(0, max(stats$alignment_rate)),
                      labels=c(0, "Max"),
                      name="% alignment") +
  guides(fill=guide_colourbar(ticks=FALSE,
                              frame.colour = "black",
                              frame.linewidth = 1)) +
  theme(axis.text.y=element_blank(),
        axis.title=element_blank(),
        axis.line=element_blank(),
        axis.ticks=element_blank(),
        plot.margin=margin(0,0,0,0, unit='pt'))
  
mit <- 
  ggplot(stats,
       aes("% Mito",
           sampleID)) +
  geom_tile(aes(fill=chrM_rate),
            color="black", size=1) +
  geom_text(aes(label=round(chrM_rate, 1))) +
  scale_fill_gradient(low="dodgerblue3",
                      high="white",
                      limits=c(0, max(stats$chrM_rate)),
                      breaks=c(0, max(stats$chrM_rate)),
                      labels=c("0", "Max"),
                      name="% Mitochondrial") +
  guides(fill=guide_colourbar(ticks=FALSE,
                              frame.colour = "black",
                              frame.linewidth = 1)) +
  theme(axis.text.y=element_blank(),
        axis.title=element_blank(),
        axis.line=element_blank(),
        axis.ticks=element_blank(),
        plot.margin=margin(0,0,0,0, unit='pt'))


nsc <- 
  ggplot(stats,
       aes("NSC",
           sampleID)) +
  geom_tile(aes(fill=NSC),
            color="black", size=1) +
  geom_text(aes(label=round(NSC, 1))) +
  scale_fill_gradient(low="white",
                      high="indianred4",
                      limits=c(1, max(stats$NSC)),
                      breaks=c(1, max(stats$NSC)),
                      labels=c("1", "Max"),
                      name="NSC") +
  guides(fill=guide_colourbar(ticks=FALSE,
                              frame.colour = "black",
                              frame.linewidth = 1)) +
  theme(axis.text.y=element_blank(),
        axis.title=element_blank(),
        axis.line=element_blank(),
        axis.ticks=element_blank(),
        plot.margin=margin(0,0,0,0, unit='pt'))

rsc <- 
  ggplot(stats,
       aes("RSC",
           sampleID)) +
  geom_tile(aes(fill=RSC),
            color="black", size=1) +
  geom_text(aes(label=round(RSC, 1))) +
  scale_fill_gradient(low="white",
                      high="turquoise4",
                      limits=c(0, max(stats$RSC)),
                      breaks=c(0, max(stats$RSC)),
                      labels=c("0", "Max"),
                      name="RSC") +
  guides(fill=guide_colourbar(ticks=FALSE,
                              frame.colour = "black",
                              frame.linewidth = 1)) +
  theme(axis.text.y=element_blank(),
        axis.title=element_blank(),
        axis.line=element_blank(),
        axis.ticks=element_blank(),
        plot.margin=margin(0,0,0,0, unit='pt'))


## Get legend -----------------------
lib.leg <- get_legend(lib)
al.leg <- get_legend(align)
mit.leg <- get_legend(mit)
nsc.leg <- get_legend(nsc)
rsc.leg <- get_legend(rsc)


leg <- plot_grid(lib.leg, 
                 al.leg,
                 mit.leg, 
                 nsc.leg, 
                 rsc.leg,
                 nrow=1)

## Create heatmap --------------------------

heat <- plot_grid(lib + theme(legend.position="none"), 
                  align + theme(legend.position="none"),
          mit + theme(legend.position="none"), 
          nsc + theme(legend.position="none"), 
          rsc + theme(legend.position="none"),
          nrow=1,
          align='h',
          rel_widths=c(0.30, rep(0.1750, 4))
          )


## Final plot ----------------
qc <- 
  plot_grid(heat, leg, nrow=2, rel_heights = c(0.7, 0.3))

qc
Sumary of per-replicate sequencing metrics, showing total library sizes, percentage of aligned reads, percentage of mitochondrial aligned reads, normalized strand cross-correlation coefficient (NSC) and relative strand cross-correlation coefficient (RSC).

Figure 1: Sumary of per-replicate sequencing metrics, showing total library sizes, percentage of aligned reads, percentage of mitochondrial aligned reads, normalized strand cross-correlation coefficient (NSC) and relative strand cross-correlation coefficient (RSC).

Version Author Date
2b4820d Mireia Ramos 2020-05-06
a43977a Mireia Ramos 2020-05-05
dd5fce0 Mireia Ramos 2020-05-05
6fe9619 Mireia Ramos 2020-04-24
load("../data/CYT/ATAC/QC/ATAC_tss_enrichment.rda")
# tss <- ungroup(tss)
# save(tss, file="../data/CYT/ATAC/QC/ATAC_tss_enrichment.rda")

tss$dataset <- factor(tss$dataset, levels=c("TSS annotation", "Random control"))
tss$group <- gsub("[[:digit:]]*_", "_", tss$sample)

tss <- tss %>% 
  group_by(dataset, group, Position) %>%
  summarise(mean=mean(mean))

tss.plot <- 
  ggplot(tss,
       aes(Position, mean)) +
  geom_line(aes(group=dataset, color=dataset), lwd=0.7) +
  scale_color_manual(values=c("seagreen4", "goldenrod3"), name="Dataset") +
  facet_wrap(~group, scales="free_y") +
  theme(legend.position="top") +
  ylab("Mean ATAC-seq read counts") + xlab("Position relative to TSS (bp)")

tss.plot
Enrichment of ATAC-seq reads around protein-coding TSS compared to a randomized set of regions.

Figure 2: Enrichment of ATAC-seq reads around protein-coding TSS compared to a randomized set of regions.

Version Author Date
2b4820d Mireia Ramos 2020-05-06
a43977a Mireia Ramos 2020-05-05
dd5fce0 Mireia Ramos 2020-05-05
6fe9619 Mireia Ramos 2020-04-24
load("../data/CYT/ATAC/QC/ATAC_noise.rda")
# stats <- ungroup(stats)
# save(stats, file="../data/CYT/ATAC/QC/ATAC_noise.rda")

stats$mean.errorbar <- stats$mean
stats <- stats[order(rev(stats$Annotation)),]

stats <- stats[stats$Annotation!="Unassigned",] %>%
  group_by(group) %>%
  mutate(cumsum=cumsum(mean))

noise <- 
  ggplot(stats[stats$Annotation!="Unassigned",],
       aes(group, mean)) +
  geom_bar(aes(fill=Annotation), stat="identity",
           position="stack",
           color="black", lwd=0.7) +
  geom_errorbar(aes(ymin=cumsum, ymax=cumsum+sd,
                    group=Annotation),
                width=.3, lwd=0.5) +
  scale_fill_manual(values=c("violetred", "dark orange")) +
  scale_y_continuous(name="Percentage of reads in peaks (%)") +
  theme(axis.text.x=element_text(angle=30, hjust=1),
        legend.position="top",
        axis.title.x=element_blank())

noise
Signal-to-noise ratios of ATAC-seq reads located at called peaks vs reads outside peaks.

Figure 3: Signal-to-noise ratios of ATAC-seq reads located at called peaks vs reads outside peaks.

Version Author Date
2b4820d Mireia Ramos 2020-05-06
a43977a Mireia Ramos 2020-05-05
dd5fce0 Mireia Ramos 2020-05-05
6fe9619 Mireia Ramos 2020-04-24
Rscript code/QC_CORR_genome.R data/CYT/ATAC/BAM/ data/CYT/ATAC/QC/
 get_upper_tri <- function(cormat){
    cormat[lower.tri(cormat)]<- NA
    return(cormat)
 }
 
  get_lower_tri <- function(cormat){
    cormat[upper.tri(cormat)]<- NA
    return(cormat)
  }
load("../data/CYT/ATAC/QC/COR_10kb_norm.rda")
mat <- counts

cor.mat.ctrl <- get_lower_tri(cor(mat[,grep("ctrl", colnames(mat))], method="pearson"))
ctrl.m <- reshape2::melt(cor.mat.ctrl, na.rm=TRUE)

c.ctrl.atac <-
  ggplot(data = ctrl.m, aes(Var2, Var1, fill = value))+
 geom_tile(color = "black", lwd=0.7)+
 scale_fill_gradient2(low = "white", high = "slateblue4", mid = "skyblue2", 
   midpoint = 0.5, limit = c(0,1), space = "Lab", 
   name="Pearson\nCorrelation") +
  geom_text(aes(label=round(value, 2)), size=3) +
  theme_minimal() + 
  theme(axis.text.x = element_text(angle = 45, vjust = 1, 
    size = 12, hjust = 1),
    axis.title=element_blank(),
    panel.grid.major = element_blank(),
    legend.position="none") +
  coord_fixed() + 
  ggtitle("ATAC-seq genome-wide correlation")

cor.mat.cyt <- get_upper_tri(cor(mat[,grep("cyt", colnames(mat))], method="pearson"))
cyt.m <- reshape2::melt(cor.mat.cyt, na.rm=TRUE)

c.cyt.atac <-
  ggplot(data = cyt.m, aes(Var2, Var1, fill = value))+
 geom_tile(color = "black", lwd=0.7)+
 scale_fill_gradient2(low = "white", high = "slateblue4", mid = "skyblue2", 
   midpoint = 0.5, limit = c(0,1), space = "Lab", 
   name="Pearson\nCorrelation") +
  geom_text(aes(label=round(value, 2)), size=3) +
  theme_minimal() + 
  theme(axis.text.x = element_text(angle = 45, vjust = 1, 
    size = 12, hjust = 1),
    axis.title=element_blank(),
    legend.justification = c(1, 0),
    legend.position = c(0.6, 0.75),
    legend.direction = "horizontal",
    panel.grid.major = element_blank()) +
  coord_fixed() +
  guides(fill = guide_colorbar(barwidth = 7, barheight = 1,
                title.position = "top", title.hjust = 0.5))


cor.rep.atac <- plot_grid(c.ctrl.atac, c.cyt.atac)
cor.rep.atac
ATAC-seq correlation using the number of reads in a 10kb binned genome normalized with DESeq2.

Figure 4: ATAC-seq correlation using the number of reads in a 10kb binned genome normalized with DESeq2.

Version Author Date
a43977a Mireia Ramos 2020-05-05
dd5fce0 Mireia Ramos 2020-05-05
6fe9619 Mireia Ramos 2020-04-24

Differential analysis

cd data/CYT/ATAC
Rscript ../../code/CYT_diffAnalysis_DESeq2_chrom.R -f 1 -q 0.05 -b TRUE -s hi -e ATAC
Rscript ../../code/CYT_diffAnalysis_DESeq2_chrom.R -f 1 -q 0.05 -b TRUE -s endoc -e ATAC
load("../data/CYT/ATAC/diffAnalysis/ATAC_endoc_fc1_padj0.05_GRangesBatch.rda")

table(res.gr$type, res.gr$annotation) %>% 
  knitr::kable(format="html",
               format.args = list(big.mark = ","),
               caption = "Number of regions classified according to significance and distance to TSS in ATAC-seq EndoC samples.") %>% 
  kable_styling(full_width = FALSE) %>% 
  add_header_above(c("Region type" = 1, "Location respect TSS" = 2))
Table 1: Number of regions classified according to significance and distance to TSS in ATAC-seq EndoC samples.
Region type
Location respect TSS
Distal Promoter
gained 12,240 267
lost 679 9
stable 171,672 13,354
volc_ec <- 
  ggplot(data.frame(res.gr),
       aes(log2FoldChange, -log10(padj))) +
  geom_point(aes(color=type), size=0.4) + 
  scale_color_manual(values=pals$differential,
                    name="RE type") +
  geom_vline(xintercept=c(1,-1), linetype=2, color="dark grey") +
  geom_hline(yintercept=-log10(0.05), linetype=2, color="dark grey") +
  xlab(expression(Log[2]*" fold-change")) + ylab(expression(-Log[10]*" FDR adjusted P")) +
  ggtitle(expression("ATAC-seq EndoC-"*beta*H1)) +
  theme(legend.position="none")
load("../data/CYT/ATAC/diffAnalysis/ATAC_hi_fc1_padj0.05_GRangesBatch.rda")

table(res.gr$type, res.gr$annotation) %>% 
  knitr::kable(format="html",
               format.args = list(big.mark = ","),
               caption = "Number of regions classified according to significance and distance to TSS in ATAC-seq HI samples.") %>% 
  kable_styling(full_width = FALSE) %>% 
  add_header_above(c("Region type" = 1, "Location respect TSS" = 2))
Table 2: Number of regions classified according to significance and distance to TSS in ATAC-seq HI samples.
Region type
Location respect TSS
Distal Promoter
gained 14,505 462
lost 4,544 115
stable 295,383 18,090
volc_hi <- 
  ggplot(data.frame(res.gr),
       aes(log2FoldChange, -log10(padj))) +
  geom_point(aes(color=type), size=0.4) + 
  scale_color_manual(values=pals$differential,
                    name="RE type") +
  geom_vline(xintercept=c(1,-1), linetype=2, color="dark grey") +
  geom_hline(yintercept=-log10(0.05), linetype=2, color="dark grey") +
  xlab(expression(Log[2]*" fold-change")) + ylab(expression(-Log[10]*" FDR adjusted P")) +
  ggtitle(expression("ATAC-seq HI")) +
  theme(legend.position="none")
plot_grid(volc_ec, 
          volc_hi,
          ncol=2)
Volcano plots showing the open chromatin sites in EndoC and human islet (HI) samples. The horizontal line denotes the FDR adjusted P-value threshold set at 0.05 and the vertical lines the log2 fold-change thresholds, at -1 and 1. Gained regions are represented in green and lost regions are shown in red.

Figure 5: Volcano plots showing the open chromatin sites in EndoC and human islet (HI) samples. The horizontal line denotes the FDR adjusted P-value threshold set at 0.05 and the vertical lines the log2 fold-change thresholds, at -1 and 1. Gained regions are represented in green and lost regions are shown in red.

Version Author Date
2b4820d Mireia Ramos 2020-05-06
a43977a Mireia Ramos 2020-05-05
dd5fce0 Mireia Ramos 2020-05-05
6fe9619 Mireia Ramos 2020-04-24
## Load regions
load("../data/CYT/ATAC/diffAnalysis/ATAC_endoc_fc1_padj0.05_GRangesBatch.rda")
ec <- res.gr

load("../data/CYT/ATAC/diffAnalysis/ATAC_hi_fc1_padj0.05_GRangesBatch.rda")
hi <- res.gr

## Find overlaps
ols <- findOverlaps(hi, ec)

## Get fold-change in HI vs type in EndoC
df <- cbind(data.frame(hi)[queryHits(ols),c(6,8)],
            data.frame(ec)[subjectHits(ols),c(13)])
colnames(df)[3] <- "type_ec"

## Plot results
ggplot(df,
       aes(type_ec, log2FoldChange)) + 
  geom_hline(yintercept=c(1,-1), lty=2, color="grey") +
  geom_hline(yintercept=0, lty=1, color="grey") +
  geom_boxplot(aes(color=type_ec), notch=F, outlier.shape=NA,
               lwd=1) +
  scale_color_manual(values=pals$differential,
                    name="RE type") +
  scale_y_continuous(name=expression("HI "*log[2]*" FC")) +
  theme(legend.position="none",
        strip.background = element_rect(fill="white", linetype=1, size=.5, color="black")) + 
  scale_x_discrete(name=expression("EndoC-"*beta*"H1 region type"),
                   labels=function(x) Hmisc::capitalize(x)) +
  coord_cartesian(ylim=c(-2,3))
Boxplot of HI log2FC at ATAC-seq regions classified as gained, lost or stable in EndoC cells. Horizontal dashed lines show the upper and lower log2 FC thresholds.

Figure 6: Boxplot of HI log2FC at ATAC-seq regions classified as gained, lost or stable in EndoC cells. Horizontal dashed lines show the upper and lower log2 FC thresholds.

Version Author Date
2b4820d Mireia Ramos 2020-05-06
a43977a Mireia Ramos 2020-05-05

Analysis of H3K27ac ChIP-seq data

Quality control

Rscript code/QC_CORR_genome.R data/CYT/H3K27ac/BAM/ data/CYT/H3K27ac/QC/
load("../data/CYT/H3K27ac/QC/COR_10kb_norm.rda")
mat <- counts

cor.mat.ctrl <- get_lower_tri(cor(mat[,grep("ctrl", colnames(mat))], method="pearson"))
ctrl.m <- reshape2::melt(cor.mat.ctrl, na.rm=TRUE)

c.ctrl.H3K27ac <-
  ggplot(data = ctrl.m, aes(Var2, Var1, fill = value))+
 geom_tile(color = "black", lwd=0.7)+
 scale_fill_gradient2(low = "white", high = "slateblue4", mid = "skyblue2", 
   midpoint = 0.5, limit = c(0,1), space = "Lab", 
   name="Pearson\nCorrelation") +
  geom_text(aes(label=round(value, 2)), size=3) +
  theme_minimal() + 
  theme(axis.text.x = element_text(angle = 45, vjust = 1, 
    size = 12, hjust = 1),
    axis.title=element_blank(),
    panel.grid.major = element_blank(),
    legend.position="none") +
  coord_fixed() + 
  ggtitle("H3k27ac genome-wide correlation")

cor.mat.cyt <- get_upper_tri(cor(mat[,grep("cyt", colnames(mat))], method="pearson"))
cyt.m <- reshape2::melt(cor.mat.cyt, na.rm=TRUE)

c.cyt.H3K27ac <-
  ggplot(data = cyt.m, aes(Var2, Var1, fill = value))+
 geom_tile(color = "black", lwd=0.7)+
 scale_fill_gradient2(low = "white", high = "slateblue4", mid = "skyblue2", 
   midpoint = 0.5, limit = c(0,1), space = "Lab", 
   name="Pearson\nCorrelation") +
  geom_text(aes(label=round(value, 2)), size=3) +
  theme_minimal() + 
  theme(axis.text.x = element_text(angle = 45, vjust = 1, 
    size = 12, hjust = 1),
    axis.title=element_blank(),
    legend.justification = c(1, 0),
    legend.position = c(0.6, 0.75),
    legend.direction = "horizontal",
    panel.grid.major = element_blank()) +
  coord_fixed() +
  guides(fill = guide_colorbar(barwidth = 7, barheight = 1,
                title.position = "top", title.hjust = 0.5))


cor.rep.H3K27ac <- plot_grid(c.ctrl.H3K27ac, c.cyt.H3K27ac)
cor.rep.H3K27ac
H3K27ac ChIP-seq correlation using the number of reads in a 10kb binned genome normalized with DESeq2.

Figure 7: H3K27ac ChIP-seq correlation using the number of reads in a 10kb binned genome normalized with DESeq2.

Version Author Date
a43977a Mireia Ramos 2020-05-05
dd5fce0 Mireia Ramos 2020-05-05
6fe9619 Mireia Ramos 2020-04-24

Differential analysis

cd data/CYT/H3K27ac
Rscript ../../code/CYT_diffAnalysis_DESeq2_chrom.R -f 1 -q 0.05 -b TRUE -s hi -e H3K27ac
Rscript ../../code/CYT_diffAnalysis_DESeq2_chrom.R -f 1 -q 0.05 -b TRUE -s endoc -e H3K27ac
load("../data/CYT/H3K27ac/diffAnalysis/H3K27ac_endoc_fc1_padj0.05_GRangesBatch.rda")

table(res.gr$type, res.gr$annotation) %>% 
  knitr::kable(format="html",
               format.args = list(big.mark = ","),
               caption = "Number of regions classified according to significance and distance to TSS in H3K27ac EndoC samples.") %>% 
  kable_styling(full_width = FALSE) %>% 
  add_header_above(c("Region type" = 1, "Location respect TSS" = 2))
Table 3: Number of regions classified according to significance and distance to TSS in H3K27ac EndoC samples.
Region type
Location respect TSS
Distal Promoter
gained 3,180 201
lost 19 0
stable 134,512 11,930
volc_ec <- 
  ggplot(data.frame(res.gr),
       aes(log2FoldChange, -log10(padj))) +
  geom_point(aes(color=type), size=0.4) + 
  scale_color_manual(values=pals$differential,
                    name="RE type") +
  geom_vline(xintercept=c(1,-1), linetype=2, color="dark grey") +
  geom_hline(yintercept=-log10(0.05), linetype=2, color="dark grey") +
  xlab(expression(Log[2]*" fold-change")) + ylab(expression(-Log[10]*" FDR adjusted P")) +
  ggtitle(expression("H3K27ac EndoC-"*beta*H1)) +
  theme(legend.position="none")
load("../data/CYT/H3K27ac/diffAnalysis/H3K27ac_hi_fc1_padj0.05_GRangesBatch.rda")

table(res.gr$type, res.gr$annotation) %>% 
  knitr::kable(format="html",
               format.args = list(big.mark = ","),
               caption = "Number of regions classified according to significance and distance to TSS in H3K27ac HI samples.") %>% 
  kable_styling(full_width = FALSE) %>% 
  add_header_above(c("Region type" = 1, "Location respect TSS" = 2))
Table 4: Number of regions classified according to significance and distance to TSS in H3K27ac HI samples.
Region type
Location respect TSS
Distal Promoter
gained 4,022 219
lost 5,895 250
stable 110,543 11,006
volc_hi <- 
  ggplot(data.frame(res.gr),
       aes(log2FoldChange, -log10(padj))) +
  geom_point(aes(color=type), size=0.4) + 
  scale_color_manual(values=pals$differential,
                    name="RE type") +
  geom_vline(xintercept=c(1,-1), linetype=2, color="dark grey") +
  geom_hline(yintercept=-log10(0.05), linetype=2, color="dark grey") +
  xlab(expression(Log[2]*" fold-change")) + ylab(expression(-Log[10]*" FDR adjusted P")) +
  ggtitle(expression("H3K27ac HI")) +
  theme(legend.position="none")
plot_grid(volc_ec, 
          volc_hi,
          ncol=2)
Volcano plots showing the enriched H3K27ac sites in EndoC and human islet (HI) samples. The horizontal line denotes the FDR adjusted P-value threshold set at 0.05 and the vertical lines the log2 fold-change thresholds, at -1 and 1. Gained regions are represented in green and lost regions are shown in red.

Figure 8: Volcano plots showing the enriched H3K27ac sites in EndoC and human islet (HI) samples. The horizontal line denotes the FDR adjusted P-value threshold set at 0.05 and the vertical lines the log2 fold-change thresholds, at -1 and 1. Gained regions are represented in green and lost regions are shown in red.

Version Author Date
2b4820d Mireia Ramos 2020-05-06
a43977a Mireia Ramos 2020-05-05
## Load regions
load("../data/CYT/H3K27ac/diffAnalysis/H3K27ac_endoc_fc1_padj0.05_GRangesBatch.rda")
ec <- res.gr

load("../data/CYT/H3K27ac/diffAnalysis/H3K27ac_hi_fc1_padj0.05_GRangesBatch.rda")
hi <- res.gr

## Find overlaps
ols <- findOverlaps(hi, ec)

## Get fold-change in HI vs type in EndoC
df <- cbind(data.frame(hi)[queryHits(ols),c(6,8)],
            data.frame(ec)[subjectHits(ols),c(13)])
colnames(df)[3] <- "type_ec"

## Plot results
ggplot(df,
       aes(type_ec, log2FoldChange)) + 
  geom_hline(yintercept=c(1,-1), lty=2, color="grey") +
  geom_hline(yintercept=0, lty=1, color="grey") +
  geom_boxplot(aes(color=type_ec), notch=F, outlier.shape=NA,
               lwd=1) +
  scale_color_manual(values=pals$differential,
                    name="RE type") +
  scale_y_continuous(name=expression("HI "*log[2]*" FC")) +
  scale_x_discrete(name=expression("EndoC-"*beta*"H1 region type"),
                   labels=function(x) Hmisc::capitalize(x)) +
  theme(legend.position="none",
        strip.background = element_rect(fill="white", linetype=1, size=.5, color="black")) + 
  coord_cartesian(ylim=c(-2,3))
Boxplot of HI log2FC at H3K27ac regions classified as gained, lost or stable in EndoC cells. Horizontal dashed lines show the upper and lower log2 FC thresholds.

Figure 9: Boxplot of HI log2FC at H3K27ac regions classified as gained, lost or stable in EndoC cells. Horizontal dashed lines show the upper and lower log2 FC thresholds.

Version Author Date
2b4820d Mireia Ramos 2020-05-06
a43977a Mireia Ramos 2020-05-05

Defining Induced Regulatory Elements

In EndoC-\(\beta\)H1

load("../data/CYT/ATAC/diffAnalysis/ATAC_endoc_fc1_padj0.05_GRangesBatch.rda")
at <- res.gr

load("../data/CYT/H3K27ac/diffAnalysis/H3K27ac_endoc_fc1_padj0.05_GRangesBatch.rda")
k27 <- res.gr

ols <- findOverlaps(at, k27, maxgap=200)

re <- at[queryHits(ols),]
colnames(mcols(re)) <- paste0("atac.", colnames(mcols(re)))
mcols(k27) <- mcols(k27)[,c(1,3,7,8)]
colnames(mcols(k27)) <- paste0("h3k27ac.", colnames(mcols(k27)))
mcols(re) <- cbind(mcols(re),
                   mcols(k27)[subjectHits(ols),])

## Create new types of IREs
re$type <- NA
re$type[re$h3k27ac.type=="stable" & re$atac.type=="stable"] <- "SRE"
re$type[re$h3k27ac.type=="gained" & (re$atac.type %in% c("gained", "stable"))] <- "IRE"

dir.create("../data/CYT/REs", F)
save(re, file="../data/CYT/REs/REs_endoc_fc1_padj0.05_granges.rda")

## Create less stringent IREs
re$type <- NA
re$h3k27ac.type[re$h3k27ac.log2FoldChange > 0.8 & re$h3k27ac.padj <= 0.05] <- "gained"
re$type[re$h3k27ac.type=="stable" & re$atac.type=="stable"] <- "SRE"
re$type[re$h3k27ac.type=="gained" & (re$atac.type %in% c("gained", "stable"))] <- "IRE"
save(re, file="../data/CYT/REs/REs_endoc_fc1_padj0.05_granges_k27.8.rda")
load("../data/CYT/REs/REs_endoc_fc1_padj0.05_granges.rda")

cor <- cor.test(re$atac.log2FoldChange, re$h3k27ac.log2FoldChange)

re.df <- data.frame(re)[,-c(1:5)]

re.df$type <- factor(re.df$type, 
                     levels=c("SRE", "IRE"))

re.df <- re.df[order(re.df$type),]

ggplot(re.df,
       aes(atac.log2FoldChange, h3k27ac.log2FoldChange)) +
  geom_point(aes(color=h3k27ac.type,
                 fill=atac.type), pch=21) +
  scale_fill_manual(values=pals$differential) +
  scale_color_manual(values=pals$differential) +
  geom_vline(xintercept=c(-1,1), lty=2, color="grey") +
  geom_hline(yintercept=c(-1,1), lty=2, color="grey") +
  annotate("text", x=4, y=-2, label=paste0("r2=", round(cor$estimate, 2),
                                      "\nP<2x10-16")) +
  theme(legend.position="none") +
  scale_y_continuous(limits=c(-3,6),
                     name=expression("H3K27ac "*log[2]*" FC")) +
  scale_x_continuous(limits=c(-3,6),
                     name=expression("ATAC-seq "*log[2]*" FC"))

Version Author Date
2b4820d Mireia Ramos 2020-05-06

In human islets

load("../data/CYT/ATAC/diffAnalysis/ATAC_hi_fc1_padj0.05_GRangesBatch.rda")
at <- res.gr

load("../data/CYT/H3K27ac/diffAnalysis/H3K27ac_hi_fc1_padj0.05_GRangesBatch.rda")
k27 <- res.gr

ols <- findOverlaps(at, k27, maxgap=200)

re <- at[queryHits(ols),]
colnames(mcols(re)) <- paste0("atac.", colnames(mcols(re)))
mcols(k27) <- mcols(k27)[,c(1,3,7,8)]
colnames(mcols(k27)) <- paste0("h3k27ac.", colnames(mcols(k27)))
mcols(re) <- cbind(mcols(re),
                   mcols(k27)[subjectHits(ols),])

## Create new types of IREs
re$type <- NA
re$type[re$h3k27ac.type=="stable" & re$atac.type=="stable"] <- "SRE"
re$type[re$h3k27ac.type=="gained" & (re$atac.type %in% c("gained", "stable"))] <- "IRE"

dir.create("../data/CYT/REs", F)
save(re, file="../data/CYT/REs/REs_hi_fc1_padj0.05_granges.rda")

## Create less stringent IREs
re$type <- NA
re$h3k27ac.type[re$h3k27ac.log2FoldChange > 0.8 & re$h3k27ac.padj <= 0.05] <- "gained"
re$type[re$h3k27ac.type=="stable" & re$atac.type=="stable"] <- "SRE"
re$type[re$h3k27ac.type=="gained" & (re$atac.type %in% c("gained", "stable"))] <- "IRE"
save(re, file="../data/CYT/REs/REs_hi_fc1_padj0.05_granges_k27.8.rda")
load("../data/CYT/REs/REs_hi_fc1_padj0.05_granges.rda")

cor <- cor.test(re$atac.log2FoldChange, re$h3k27ac.log2FoldChange)

re.df <- data.frame(re)[,-c(1:5)]

re.df$type <- factor(re.df$type, 
                     levels=c("SRE", "IRE"))

re.df <- re.df[order(re.df$type),]

ggplot(re.df,
       aes(atac.log2FoldChange, h3k27ac.log2FoldChange)) +
  geom_point(aes(color=h3k27ac.type,
                 fill=atac.type), pch=21) +
  scale_fill_manual(values=pals$differential) +
  scale_color_manual(values=pals$differential) +
  geom_vline(xintercept=c(-1,1), lty=2, color="grey") +
  geom_hline(yintercept=c(-1,1), lty=2, color="grey") +
  annotate("text", x=4, y=-2, label=paste0("r2=", round(cor$estimate, 2),
                                      "\nP<2x10-16")) +
  theme(legend.position="none") +
  scale_y_continuous(limits=c(-3,6),
                     name=expression("H3K27ac "*log[2]*" FC")) +
  scale_x_continuous(limits=c(-3,6),
                     name=expression("ATAC-seq "*log[2]*" FC"))

Version Author Date
2b4820d Mireia Ramos 2020-05-06

Clustering

Interestingly, the set of IREs identified in EndoC-\(\beta\)H1 cells allows us to cluster both EndoC-\(\beta\)H1 and Human Islet ATAC-seq and H3K27ac regions according to the suffered treatment and not sample type.

################################################
## Clustering samples according to EndoC IREs ##
################################################
library(DESeq2)
library(BiocParallel)
register(MulticoreParam(4))

## ATAC-seq ------------------------------------
# Create SAF
load("../data/CYT/REs/REs_endoc_fc1_padj0.05_granges.rda")
saf <- data.frame(re)[grep("IRE", re$type),c(1:3,6)]
colnames(saf) <- c("Chr", "Start", "End", "GeneID")
saf$Strand <- "+"

# Get counts at IREs
files <- list.files("../data/CYT/ATAC/BAM",
                    pattern=".offset.bam$",
                    full.names=TRUE)

atac <- Rsubread::featureCounts(files,
                                annot.ext=saf,
                                nthreads=10)

names <- pipelineNGS::getNameFromPath(files, suffix=".offset.bam")
colnames(atac$counts) <- names

# Normalize with DESeq2
coldata <- data.frame(sample=names,
                      treatment=unlist(lapply(strsplit(names, "_"),
                                              function(x) x[2])),
                      batch=unlist(lapply(strsplit(names, "_"),
                                          function(x) x[1])))
coldata$tissue <- gsub("[[:digit:]]*", "", coldata$batch)

dds <- DESeqDataSetFromMatrix(countData=atac$counts,
                              colData=coldata,
                              design=~batch+treatment)

dds <- DESeq(dds,
             parallel=TRUE)

rld <- rlog(dds)
vsd <- vst(dds)
save(rld,
     file=file.path(out_dir, "IREs_ATAC_clustering_rld.rda"))

## H3K27ac -------------------------------------------
# Create SAF
load("../data/CYT/REs/REs_endoc_fc1_padj0.05_granges.rda")
id <- unique(re$h3k27ac.GeneID[grep("IRE", re$type)])

load("../data/CYT/H3K27ac/diffAnalysis/H3K27ac_endoc_fc1_padj0.05_GRangesBatch.rda")
res.gr <- res.gr[res.gr$GeneID %in% id,]
saf <- data.frame(res.gr)[,c(1:3,6)]
colnames(saf) <- c("Chr", "Start", "End", "GeneID")
saf$Strand <- "+"

# Get counts at IREs
files <- list.files("../../data/CYT/H3K27ac/BAM",
                    pattern=".bam$",
                    full.names=TRUE)
files <- files[!grepl("raw", files)]

atac <- Rsubread::featureCounts(files,
                                annot.ext=saf,
                                nthreads=10)

names <- pipelineNGS::getNameFromPath(files, suffix=".bam")
colnames(atac$counts) <- names

# Normalize with DESeq2
coldata <- data.frame(sample=names,
                      treatment=unlist(lapply(strsplit(names, "_"),
                                              function(x) x[2])),
                      batch=unlist(lapply(strsplit(names, "_"),
                                          function(x) x[1])))
coldata$tissue <- gsub("[[:digit:]]*", "", coldata$batch)

dds <- DESeqDataSetFromMatrix(countData=atac$counts,
                              colData=coldata,
                              design=~batch+treatment)

dds <- DESeq(dds,
             parallel=TRUE)

rld <- rlog(dds)

save(rld,
     file=file.path(out_dir, "IREs_H3K27ac_clustering_rld.rda"))
load(file.path(out_dir, "IREs_ATAC_clustering_rld.rda"))

mat <- assay(rld)
mat <- limma::removeBatchEffect(mat, rld$batch)

colors <- colorRampPalette( rev(RColorBrewer::brewer.pal(9, "BuPu")) )(255)
rows <- data.frame("Treatment"=rld$treatment,
                     "Tissue"=rld$tissue)
  
ha = HeatmapAnnotation(df = rows,
                       col = list(Treatment = c(cyt="dark orange", ctrl="steelblue3"),
                                   Tissue = c(endoc="violetred3", hi="palegreen3")))
  
sampleDists <- dist(t(mat), method="euclidean")
sampleDistMatrix <- as.matrix(sampleDists)
hclust <- hclust(sampleDists)
heat <- Heatmap(sampleDistMatrix+1,
                  col=colors,
                  heatmap_legend_param = list(title = "Distance", 
                                              color_bar = "continuous",
                                              legend_direction="horizontal"),
                  top_annotation=ha,
                  rect_gp = gpar(col= "black"),
                  cluster_rows=hclust,
                  cluster_columns=hclust)
  
draw(heat, heatmap_legend_side = "bottom", annotation_legend_side = "right")

Version Author Date
2b4820d Mireia Ramos 2020-05-06
load(file.path(out_dir, "IREs_H3K27ac_clustering_rld.rda"))

rld$batch[1] <- "endoc3"
mat <- assay(rld)
mat <- limma::removeBatchEffect(mat, rld$batch)
Coefficients not estimable: batch8 
colors <- colorRampPalette( rev(RColorBrewer::brewer.pal(9, "BuPu")) )(255)
rows <- data.frame("Treatment"=rld$treatment,
                     "Tissue"=rld$tissue)
  
ha = HeatmapAnnotation(df = rows,
                       col = list(Treatment = c(cyt="dark orange", ctrl="steelblue3"),
                                   Tissue = c(endoc="violetred3", hi="palegreen3")))
  
sampleDists <- dist(t(mat), method="euclidean")
sampleDistMatrix <- as.matrix(sampleDists)
hclust <- hclust(sampleDists)
heat <- Heatmap(sampleDistMatrix+1,
                  col=colors,
                  heatmap_legend_param = list(title = "Distance", 
                                              color_bar = "continuous",
                                              legend_direction="horizontal"),
                  top_annotation=ha,
                  rect_gp = gpar(col= "black"),
                  cluster_rows=hclust,
                  cluster_columns=hclust)
  
draw(heat, heatmap_legend_side = "bottom", annotation_legend_side = "right")

Version Author Date
2b4820d Mireia Ramos 2020-05-06

Characterization of IREs in EndoC-\(\beta\)H1

load("../data/CYT/REs/REs_endoc_fc1_padj0.05_granges.rda")

re.df <- data.frame(re)[,-c(1:5)]

t <- table(re.df$type, re.df$atac.annotation)
t
     
      Distal Promoter
  IRE   3594      204
  SRE  70391     9982
## Make groups
re.tss <- unique(re.df[!is.na(re.df$type),])

re.tss$anno.group <- NA
re.tss$anno.group[abs(re.tss$atac.distanceToTSS)>200e3] <- ">200kb"
re.tss$anno.group[abs(re.tss$atac.distanceToTSS)<=200e3 &
                    abs(re.tss$atac.distanceToTSS)>20e3] <- "20-200kb"
re.tss$anno.group[abs(re.tss$atac.distanceToTSS)<=20e3 &
                    abs(re.tss$atac.distanceToTSS)>2e3] <- "2-20kb"
re.tss$anno.group[abs(re.tss$atac.distanceToTSS)<=2e3] <- "0-2kb"

len.ire <- sum(grepl("IRE", re.tss$type))
len.sre <- sum(grepl("SRE", re.tss$type))

sum.tss <- re.tss %>%
  group_by(type, anno.group) %>%
  summarise(num=length(unique(atac.GeneID)))

sum.tss$perc <- NA
sum.tss$perc[grep("IRE", sum.tss$type)] <- sum.tss$num[grep("IRE", sum.tss$type)]/len.ire*100
sum.tss$perc[grep("SRE", sum.tss$type)] <- sum.tss$num[grep("SRE", sum.tss$type)]/len.sre*100

sum.tss$anno.group <- factor(sum.tss$anno.group,
                             levels=c("0-2kb", "2-20kb", "20-200kb", ">200kb"))

tss.plot <- 
  ggplot(sum.tss,
       aes(anno.group, perc)) +
  geom_bar(aes(fill=type), color="black", lwd=0.7, stat="identity", position="dodge") +
  geom_vline(xintercept=1.5, lty=2, color="dark red") +
  scale_fill_manual(values=pals$re,
                    name="RE type", labels=function(x) paste0(x, "s")) +
  theme(legend.position="top") +
  xlab("Distance to TSS") + 
  scale_y_continuous(name="Percentage of RE",
                     labels=function(x) paste0(x, "%"),
                     breaks=scales::pretty_breaks())

tss.plot

Version Author Date
2b4820d Mireia Ramos 2020-05-06
37f843a Mireia Ramos 2020-05-05
scope=1e3
bin=50

ire <- re[grep("IRE", re$type),]
rnd <- regioneR::randomizeRegions(ire)

ire.cons <- pipelineNGS::calculateMeanCons(ire,
                                           scope=scope,
                                           bin=bin)
ire.cons$re_type <- "IREs"
rnd.cons <- pipelineNGS::calculateMeanCons(rnd,
                                           scope=scope,
                                           bin=bin)
rnd.cons$re_type <- "Random IREs"

ire.cons <- rbind(ire.cons, rnd.cons)
save(ire.cons, file=file.path(out_path, "IRE_endoc_fc1_conservation.rda"))
load(file.path(out_dir, "IRE_endoc_fc1_conservation.rda"))

cons.plot <- 
  ggplot(ire.cons,
       aes(position, meanCons)) +
  geom_line(aes(lty=re_type), lwd=0.7, color=pals$re["IRE"]) +
  scale_linetype_discrete(name="Region type") +
  geom_vline(xintercept=0, lty=2, color="grey") +
  ylab("Mean PhastCons46way score") +
  xlab("Position from peak center (bp)") +
  theme(legend.position = "top") +
  guides(linetype=guide_legend(nrow=2))

cons.plot

Version Author Date
2b4820d Mireia Ramos 2020-05-06
37f843a Mireia Ramos 2020-05-05
library(maRge)

out_homer <- file.path(out_dir, "HOMER_IREs_endoc_fc1_padj0.05_mask/")

deNovoMotifHOMER(bed=paste0("../data/CYT/bedfiles/IREs_endoc_fc1_padj0.05.bed"),
                 path_output=out_homer,
                 other_param="-mask",
                 path_homer="~/tools/homer/")
htmltools::includeHTML(file.path(out_dir, "HOMER_IREs_endoc_fc1_padj0.05_mask/homerResults.html"))

Homer de novo Motif Results (HOMER_IREs_endoc_fc1_padj0.05_mask//)

Known Motif Enrichment Results
Gene Ontology Enrichment Results
If Homer is having trouble matching a motif to a known motif, try copy/pasting the matrix file into STAMP
More information on motif finding results: HOMER | Description of Results | Tips
Total target sequences = 3009
Total background sequences = 46739
* - possible false positive
RankMotifP-valuelog P-pvalue% of Targets% of Background STD(Bg STD) Best Match/DetailsMotif File
1 A C G T T C A G G C T A C G T A C G T A T A G C G C A T C T A G T C G A C G T A G T C A A T G C 1e-1396-3.215e+0351.71%3.44%229.2bp (184.8bp)IRF1(IRF)/PBMC-IRF1-ChIP-Seq(GSE43036)/Homer(0.972)
More Information | Similar Motifs Found
motif file (matrix)
2 C T A G A G C T C G T A G T C A G T C A A G T C C G T A A T C G 1e-39-9.077e+0144.13%32.56%278.3bp (183.6bp)FOXP3/MA0850.1/Jaspar(0.918)
More Information | Similar Motifs Found
motif file (matrix)
3 A C G T A C G T G A C T T G A C A T G C G C A T C T A G C T A G C G T A C G T A 1e-31-7.239e+0115.29%8.67%299.7bp (184.1bp)STAT4(Stat)/CD4-Stat4-ChIP-Seq(GSE22104)/Homer(0.934)
More Information | Similar Motifs Found
motif file (matrix)
4 C T A G C A G T A C G T T G C A C G T A C G A T A T G C C G T A C A G T G C A T G T C A T G C A 1e-29-6.687e+014.62%1.50%263.4bp (177.4bp)HNF1B/MA0153.2/Jaspar(0.896)
More Information | Similar Motifs Found
motif file (matrix)
5 T A G C T G A C C G T A C A G T A G T C A C G T C T A G A C G T 1e-25-5.806e+0129.88%21.69%315.3bp (184.6bp)NeuroD1(bHLH)/Islet-NeuroD1-ChIP-Seq(GSE30298)/Homer(0.947)
More Information | Similar Motifs Found
motif file (matrix)
6 C A T G A C T G C T G A T G C A G C T A C A G T A G C T G T A C A T G C A T G C 1e-21-4.880e+015.85%2.62%293.7bp (169.2bp)MF0003.1_REL_class/Jaspar(0.966)
More Information | Similar Motifs Found
motif file (matrix)
7 G T A C C G T A A C T G A C T G A G T C A G T C A T C G C G T A A G T C C G T A A G T C A C T G 1e-20-4.775e+010.37%0.00%185.7bp (189.2bp)Zfx/MA0146.2/Jaspar(0.618)
More Information | Similar Motifs Found
motif file (matrix)
8 A C G T A G T C C G T A A C T G A C G T A G T C A G T C C G T A A G T C A C G T A C T G C G T A 1e-19-4.473e+010.40%0.00%220.6bp (67.7bp)Srebp2(bHLH)/HepG2-Srebp2-ChIP-Seq(GSE31477)/Homer(0.638)
More Information | Similar Motifs Found
motif file (matrix)
9 A C T G A C G T A C T G A G T C C T G A A C G T A C T G C G T A A C T G C G T A C G T A A G T C 1e-18-4.261e+010.33%0.00%194.0bp (0.0bp)PB0194.1_Zbtb12_2/Jaspar(0.637)
More Information | Similar Motifs Found
motif file (matrix)
10 A G C T C T A G C G T A A T G C A G C T A G T C T G C A A T G C 1e-18-4.186e+0117.35%11.84%306.5bp (185.9bp)FOSL1/MA0477.1/Jaspar(0.902)
More Information | Similar Motifs Found
motif file (matrix)
11 C G T A A C T G A C T G A G T C A C G T A C T G A G T C C G T A A G T C A C G T C G T A A G T C 1e-17-4.019e+010.37%0.00%188.7bp (17.4bp)ZNF382(Zf)/HEK293-ZNF382.GFP-ChIP-Seq(GSE58341)/Homer(0.597)
More Information | Similar Motifs Found
motif file (matrix)
12 A C G T A C T G A G T C A C G T A C T G C G T A A T G C C G T A 1e-16-3.825e+0116.38%11.25%315.7bp (187.8bp)NRL/MA0842.1/Jaspar(0.871)
More Information | Similar Motifs Found
motif file (matrix)
13 A G T C A G T C C G T A C G T A A C T G A C T G A G T C A C T G A C G T C G T A 1e-16-3.756e+010.30%0.00%164.6bp (0.0bp)PB0180.1_Sp4_2/Jaspar(0.656)
More Information | Similar Motifs Found
motif file (matrix)
14 A G T C A C G T A C G T A C T G A C T G A C G T A G T C A C G T A C T G A C T G A G T C A G T C 1e-16-3.756e+010.30%0.00%176.8bp (176.1bp)Hand1::Tcf3/MA0092.1/Jaspar(0.647)
More Information | Similar Motifs Found
motif file (matrix)
15 A G T C A C G T A C T G A C T G C G T A A C T G A C G T C G T A A C G T A C G T A C G T A G T C 1e-16-3.756e+010.30%0.00%194.1bp (0.0bp)NKX2.2/Human-Islets(0.604)
More Information | Similar Motifs Found
motif file (matrix)
16 A G T C A C G T A C T G C G T A A C G T C T A G A C G T C G T A C G T A A C G T A C G T A C T G 1e-16-3.756e+010.30%0.00%208.2bp (29.9bp)Chop(bZIP)/MEF-Chop-ChIP-Seq(GSE35681)/Homer(0.778)
More Information | Similar Motifs Found
motif file (matrix)
17 A C T G A G C T A C G T A G T C A G T C C G T A A G T C A C G T A C G T A G T C A G T C A G T C 1e-15-3.680e+010.47%0.02%215.3bp (177.0bp)PU.1-IRF(ETS:IRF)/Bcell-PU.1-ChIP-Seq(GSE21512)/Homer(0.778)
More Information | Similar Motifs Found
motif file (matrix)
18 A G T C A C T G A C G T C G T A C T G A A C T G C G T A C G A T C G T A A C G T A C T G A C G T 1e-15-3.579e+010.37%0.01%336.1bp (230.6bp)SD0003.1_at_AC_acceptor/Jaspar(0.614)
More Information | Similar Motifs Found
motif file (matrix)
19 A C T G A C G T C G T A A C T G A G T C A G T C C G T A A C G T A C G T A C G T A G T C A G T C 1e-15-3.574e+010.33%0.01%158.6bp (149.0bp)ZNF528(Zf)/HEK293-ZNF528.GFP-ChIP-Seq(GSE58341)/Homer(0.681)
More Information | Similar Motifs Found
motif file (matrix)
20 C G T A A C T G A C T G A C G T A C G T A C G T A C T G A C G T A C T G A G T C C G T A A G T C 1e-14-3.262e+010.27%0.00%159.5bp (92.2bp)PB0026.1_Gm397_1/Jaspar(0.724)
More Information | Similar Motifs Found
motif file (matrix)
21 A G T C C T G A C G T A C G T A C G T A A G T C A G T C C G T A 1e-13-3.210e+0111.67%7.69%302.8bp (184.2bp)PB0036.1_Irf6_1/Jaspar(0.818)
More Information | Similar Motifs Found
motif file (matrix)
22 A C T G A C T G A C G T C G T A A C T G A C G T A G T C A C T G A C G T A C T G 1e-13-3.138e+010.30%0.00%182.1bp (124.4bp)ZBTB7A/MA0750.1/Jaspar(0.677)
More Information | Similar Motifs Found
motif file (matrix)
23 A G T C A C G T A C T G A G T C A C G T A C T G A C G T A C G T A C T G C G T A A C T G A G T C 1e-13-3.138e+010.30%0.01%223.9bp (167.0bp)MyoG(bHLH)/C2C12-MyoG-ChIP-Seq(GSE36024)/Homer(0.640)
More Information | Similar Motifs Found
motif file (matrix)
24 A C G T A C G T A C T G C G T A C G T A C G T A A G T C A C G T A C G T A G T C C T G A C G T A 1e-13-3.138e+010.30%0.01%147.7bp (224.1bp)CHR(?)/Hela-CellCycle-Expression/Homer(0.663)
More Information | Similar Motifs Found
motif file (matrix)
25 * C A T G T A C G C A T G G C A T T C A G G A T C G A C T T C G A A C T G T A C G 1e-11-2.727e+0117.95%13.41%325.0bp (178.4bp)Rfx5(HTH)/GM12878-Rfx5-ChIP-Seq(GSE31477)/Homer(0.708)
More Information | Similar Motifs Found
motif file (matrix)
26 * A C G T A C G T A C G T A C G T A G T C C G T A A C G T A G T C A C G T C G T A A G T C C G T A 1e-11-2.713e+010.27%0.01%261.1bp (102.8bp)PB0083.1_Tcf7_1/Jaspar(0.598)
More Information | Similar Motifs Found
motif file (matrix)
27 * A G T C A C G T C G T A A C T G C G T A C G T A A C G T A G T C A G T C A G T C A G T C C G T A 1e-11-2.713e+010.27%0.00%163.6bp (34.9bp)GFY(?)/Promoter/Homer(0.671)
More Information | Similar Motifs Found
motif file (matrix)
28 * A C G T A C T G A C G T C G T A A C G T A G T C A C G T A G T C A C G T A G T C A C G T A C T G 1e-11-2.713e+010.27%0.00%128.4bp (160.8bp)DMRT3/MA0610.1/Jaspar(0.621)
More Information | Similar Motifs Found
motif file (matrix)
29 * A G C T G T A C T A C G T G A C C A T G C T A G T C A G G T C A T A C G A C G T 1e-11-2.602e+012.69%1.14%328.7bp (186.6bp)ETV6/MA0645.1/Jaspar(0.743)
More Information | Similar Motifs Found
motif file (matrix)
30 * A C T G A G T C C T G A A C G T G T A C A T G C A C G T A C T G A C G T C G A T 1e-11-2.575e+011.46%0.43%188.7bp (183.0bp)SPDEF(ETS)/VCaP-SPDEF-ChIP-Seq(SRA014231)/Homer(0.758)
More Information | Similar Motifs Found
motif file (matrix)
31 * A C T G C G T A C G T A C G T A C G T A C G T A A C T G A G T C A C T G A G T C 1e-10-2.315e+010.43%0.03%177.6bp (162.4bp)PB0146.1_Mafk_2/Jaspar(0.661)
More Information | Similar Motifs Found
motif file (matrix)
32 * A C G T C G T A C G T A A G T C C G T A C G T A A C G T A C T G C G T A A G T C 1e-8-2.072e+010.60%0.09%169.9bp (145.3bp)PB0172.1_Sox1_2/Jaspar(0.802)
More Information | Similar Motifs Found
motif file (matrix)
33 * T C G A T C G A A G T C T A G C C T G A A G T C A C T G A G T C C T A G A G T C 1e-8-2.039e+010.30%0.02%125.2bp (92.7bp)Ahr::Arnt/MA0006.1/Jaspar(0.782)
More Information | Similar Motifs Found
motif file (matrix)
34 * C G T A C G T A C G T A A C G T A C G T C G T A A C G T A C T G A G T C C G T A 1e-7-1.767e+010.83%0.22%216.9bp (177.2bp)Pit1+1bp(Homeobox)/GCrat-Pit1-ChIP-Seq(GSE58009)/Homer(0.765)
More Information | Similar Motifs Found
motif file (matrix)
35 * T A G C T A C G T A G C T A C G T A G C A G T C A T C G T A G C T C A G A T C G 1e-7-1.702e+011.96%0.89%392.9bp (180.7bp)POL006.1_BREu/Jaspar(0.676)
More Information | Similar Motifs Found
motif file (matrix)
36 * G C T A A T G C C G T A A G T C T A C G A T G C C T A G G A C T T A G C A C T G 1e-7-1.639e+010.53%0.10%259.8bp (154.0bp)Hes1/MA1099.1/Jaspar(0.668)
More Information | Similar Motifs Found
motif file (matrix)
37 * A G T C A G T C A G T C C T A G A C T G A C T G A C G T A G T C A C G T C G T A A C T G C T G A 1e-4-1.148e+010.13%0.01%230.9bp (101.0bp)ZBTB12(Zf)/HEK293-ZBTB12.GFP-ChIP-Seq(GSE58341)/Homer(0.740)
More Information | Similar Motifs Found
motif file (matrix)
38 * A C G T A C T G A C G T A C T G C G T A A G T C A C G T A C T G A C G T A C T G C G T A A C T G 1e-4-1.148e+010.13%0.01%110.8bp (157.1bp)Pknox1(Homeobox)/ES-Prep1-ChIP-Seq(GSE63282)/Homer(0.586)
More Information | Similar Motifs Found
motif file (matrix)
39 * A C T G A G T C A C T G A C G T C G T A A C T G A C G T C G T A 1e-4-1.032e+010.40%0.09%152.3bp (187.6bp)PB0056.1_Rfxdc2_1/Jaspar(0.567)
More Information | Similar Motifs Found
motif file (matrix)
40 * A C T G C G T A A C G T G T A C C G T A A C T G A T C G A C T G A G T C A G T C 1e-3-7.026e+000.40%0.13%245.9bp (171.3bp)Gata1(Zf)/K562-GATA1-ChIP-Seq(GSE18829)/Homer(0.643)
More Information | Similar Motifs Found
motif file (matrix)


sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.1 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=es_ES.UTF-8        LC_COLLATE=C              
 [5] LC_MONETARY=es_ES.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=es_ES.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=es_ES.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
 [1] grid      parallel  stats4    stats     graphics  grDevices utils    
 [8] datasets  methods   base     

other attached packages:
 [1] DESeq2_1.29.8               SummarizedExperiment_1.19.6
 [3] DelayedArray_0.15.7         matrixStats_0.56.0         
 [5] Matrix_1.2-18               Biobase_2.49.0             
 [7] ComplexHeatmap_2.5.5        dplyr_1.0.1                
 [9] kableExtra_1.1.0            cowplot_1.0.0              
[11] ggplot2_3.3.2               GenomicRanges_1.41.5       
[13] GenomeInfoDb_1.25.8         IRanges_2.23.10            
[15] S4Vectors_0.27.12           BiocGenerics_0.35.4        
[17] workflowr_1.6.2            

loaded via a namespace (and not attached):
 [1] colorspace_1.4-1       rjson_0.2.20           ellipsis_0.3.1        
 [4] rprojroot_1.3-2        circlize_0.4.10        htmlTable_2.0.1       
 [7] XVector_0.29.3         GlobalOptions_0.1.2    base64enc_0.1-3       
[10] fs_1.5.0               clue_0.3-57            rstudioapi_0.11       
[13] farver_2.0.3           bit64_4.0.2            AnnotationDbi_1.51.3  
[16] xml2_1.3.2             splines_4.0.2          geneplotter_1.67.0    
[19] knitr_1.29             Formula_1.2-3          annotate_1.67.0       
[22] cluster_2.1.0          png_0.1-7              readr_1.3.1           
[25] compiler_4.0.2         httr_1.4.2             backports_1.1.8       
[28] limma_3.45.9           later_1.1.0.1          htmltools_0.5.0       
[31] tools_4.0.2            gtable_0.3.0           glue_1.4.1            
[34] GenomeInfoDbData_1.2.3 reshape2_1.4.4         Rcpp_1.0.5            
[37] vctrs_0.3.2            xfun_0.16              stringr_1.4.0         
[40] rvest_0.3.6            lifecycle_0.2.0        XML_3.99-0.5          
[43] zlibbioc_1.35.0        scales_1.1.1           hms_0.5.3             
[46] promises_1.1.1         RColorBrewer_1.1-2     yaml_2.2.1            
[49] memoise_1.1.0          gridExtra_2.3          rpart_4.1-15          
[52] latticeExtra_0.6-29    stringi_1.4.6          RSQLite_2.2.0         
[55] highr_0.8              genefilter_1.71.0      checkmate_2.0.0       
[58] BiocParallel_1.23.2    shape_1.4.4            rlang_0.4.7           
[61] pkgconfig_2.0.3        bitops_1.0-6           evaluate_0.14         
[64] lattice_0.20-41        purrr_0.3.4            htmlwidgets_1.5.1     
[67] labeling_0.3           bit_4.0.4              tidyselect_1.1.0      
[70] plyr_1.8.6             magrittr_1.5           bookdown_0.20         
[73] R6_2.4.1               magick_2.4.0           generics_0.0.2        
[76] Hmisc_4.4-1            DBI_1.1.0              pillar_1.4.6          
[79] whisker_0.4            foreign_0.8-80         withr_2.2.0           
[82] survival_3.2-3         RCurl_1.98-1.2         nnet_7.3-14           
[85] tibble_3.0.3           crayon_1.3.4           rmarkdown_2.3         
[88] jpeg_0.1-8.1           GetoptLong_1.0.2       locfit_1.5-9.4        
[91] data.table_1.13.0      blob_1.2.1             git2r_0.27.1          
[94] digest_0.6.25          webshot_0.5.2          xtable_1.8-4          
[97] httpuv_1.5.4           munsell_0.5.0          viridisLite_0.3.0