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12Bellvitge Hospital-IDIBELL, Barcelona, Spain
13Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
14Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
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SUMMARY
Insulinomas are rare neuroendocrine tumors arising from pancreatic b cells, characterized by aberrant pro-
liferation and altered insulin secretion, leading to glucose homeostasis failure. With the aim of uncovering the
role of noncoding regulatory regions and their aberrations in the development of these tumors, we coupled
epigenetic and transcriptome profiling with whole-genome sequencing. As a result, we unraveled somatic
mutations associated with changes in regulatory functions. Critically, these regions impact insulin secretion,
tumor development, and epigenetic modifying genes, including polycomb complex components. Chromatin
remodeling is apparent in insulinoma-selective domains shared across patients, containing a specific set
of regulatory sequences dominated by the SOX17 binding motif. Moreover, many of these regions are
H3K27me3 repressed in b cells, suggesting that tumoral transition involves derepression of polycomb-tar-
geted domains. Our work provides a compendium of aberrant cis-regulatory elements affecting the function
and fate of b cells in their progression to insulinomas and a framework to identify coding and noncoding
driver mutations.
INTRODUCTION

The pancreas is a heterogeneous tissue hosting some of the

most debilitating diseases, including diabetes mellitus and can-

cer of the exocrine and endocrine tissue compartments.1 About

35% of pancreatic neuroendocrine tumors (PNETs) are hormone

secreting (also defined as functional PNETs), with insulinoma

being the most prevalent among them. Insulinomas are slow-
Cell Genomics 4, 100604, Au
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growing adenomas derived from the b cells that constantly pro-

duce insulin or proinsulin.2–4 They are rare, occurring in only 4 in-

dividuals per million each year. The identification of insulinomas

in medical settings is typically triggered by the excessive pro-

duction of insulin, leading to hypoglycemia and associated psy-

chomotor symptoms. Due to their rarity, they are not included in

comprehensive cancer genomic surveys such as The Cancer

Genome Atlas or the International Cancer Genome Consortium.
gust 14, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
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Although about 10% of them carry germline or somatic muta-

tions of the MEN1 gene, and several groups recently reported

a recurrent mutation affecting the transcription factor (TF)

YY1,5,6 the mechanisms underlying b-cell overgrowth and

neoplastic transformation are still obscure. Several studies point

to the possible involvement of both genetic and epigenetic

mechanisms in the tumor development and the loss of b-cell

identity,3,7,8 yet the noncoding regulatory landscape and the

full genetic profile of these tumors have not been yet elucidated.

The human genome sequence contains instructions to

generate a vast number of cell fate programs. This is possible

because each cellular state utilizes distinct sets of genomic reg-

ulatory regions. The cell fate of fully differentiated adult cells is

actively maintained by reinforcement of specific regulatory net-

works, encoded in chromatin states, defined in part by the com-

plement of active cis-elements. An increasing number of studies

have demonstrated that epigenomic reprogramming, especially

enhancer reprogramming, plays an important role in cancer pro-

gression and metastasis.9 Similarly, TFs have crucial roles as

agents driving and adjusting the reprogramming process and

have been described to initiate oncogenic processes by acti-

vating well-defined functions.10

A central feature of tumor development is the acquisition of so-

matic mutations. Large cancer genomic studies including the

Pan-Cancer Analysis of Whole Genomes show that a large

fraction of all somatic mutations lie in non-protein-coding DNA

regions, including variants overlapping known regulatory anno-

tations. These observations suggest that the alteration of non-

coding functions could underlie driver events in the acquisition

of a cancer phenotype.11 Nonetheless, currently, there is a lack

of understanding of the role of the noncoding genome in

cancer,12,13 limiting our overall understanding of the regulatory

programs intervening and driving tumoral cell states.

We have now profiled transcriptional maps, cis-regulatory net-

works, and genome-wide annotations of somatic genetic aber-

rations in insulinomas.We exploit these data to uncover aberrant

regulatory functions defining the tumoral state. These analyses

permit elucidation of the functional mechanisms driving the

b-cell neoplastic transformation.

RESULTS

Mapping the regulatory landscape of insulinomas
We profiled the transcriptome of a total of 17 insulinoma sam-

ples, including 6 obtained from a prior report3 (Figures 1A and

S1A; Table S1). We next compared them with those of unaf-

fected human pancreatic islets14–17 and insulin-producing

b cells17–20 (Figure S1A) and found that insulinomas cluster

together and separately from the normal tissues regardless of

isolation technique or center of origin (Figures S1B and S1C). Dif-

ferential expression analysis uncovered �900 genes upregu-

lated in the tumor samples (Figures 1B and S1D; Table S2). In

line with previous reports,3 we found that these genes are en-

riched in chromatin regulators and modifiers (Figure 1C) and in

histone acetyltransferases in particular (Figures 1C, S1E, and

S1F). Driven by this observation, we sought to explore whether

the tumor development is associated with reshaping of the reg-

ulatory landscape of b cells. We used chromatin immunoprecip-
2 Cell Genomics 4, 100604, August 14, 2024
itation coupled with next-generation sequencing (ChIP-seq) to

profile H3K27ac on 12 insulinoma samples, 11 of which had

matching RNA sequencing (RNA-seq) data, to map active regu-

latory elements (REs), including transcriptional promoters and

enhancers (Figure 1A; Table S1).

Overall, we mapped a total of 12,454 proximal promoters and

49,259 distal putative enhancers across all insulinoma and con-

trol human islet samples,19,22–24 resulting in a comprehensive

map of active REs (Figures S2A and S2B) capable of differenti-

ating accurately between insulinomas and the control tissues

(Figures S2C and S2D). Next, we identified �5,800 differential

H3K27ac enrichments in insulinomas compared to untrans-

formed human islets (Figure 1D; Table S3). We observed that in-

sulinoma-selective H3K27ac sites are mostly distal to transcrip-

tion start sites (TSSs) (7% proximal and 93% distal, Figure S2E).

Remarkably, we found that gains in H3K27ac enrichment are

linked to the upregulation of the nearby gene(s). Moreover, these

changes are highly correlated with the number of associated

H3K27ac sites, suggesting a cumulative effect of the REs on

the expression of the nearby transcripts (Figure 1E).

Genetic and epigenetic heterogeneity is a hallmark of cancer.

Unsupervised clustering revealed that genome-wide enrichment

of H3K27ac can clearly distinguish insulinoma from pancreatic

islets and nonfunctional PNETs, as well as from other cancer

types21,25–29 and untransformed cell types19,22–24,27,28 (Fig-

ure S3A). Yet, insulinoma’s transcriptional program remains

closer to their cells of origin when compared to other cell types

(Figures S1B, S1C, and S3A). These results, as well as the

comparatively low inter-patient variability of the H3K27ac signal

(Figure S3B), suggest lower heterogeneity of the regulatory func-

tions in insulinoma as compared to nonfunctional PNETs and

other cancer types. To systematically address whether the

H3K27ac enrichment profile is consistent across different patient

samples, we assessed inter-sample heterogeneity using a

sharing index (SI). Additionally, we evaluated intra-sample het-

erogeneity by computing a rank index (RI) to ascertain if the pro-

file is representative of the predominant cell clones within each

sample (see STAR Methods and Figures 1F and S3C). The ratio-

nale of the RImetrics stands on the observation that heterogene-

ity within the cell population was demonstrated to be the major

contributor to H3K27ac signal intensity.21 In our insulinomas

cohort, we observed a strong correlation between the SI and

RI, indicating that, as for other tumors,21 clonal epigenetic events

are those that are more shared between different patients

(Figures 1F and S3C). Moreover, we found that 50% of insuli-

noma-selective sites were common to more than 67% patient

samples (Figure S3D). Altogether, these findings suggest that in-

sulinomas from different patients may share common mecha-

nisms of gene expression deregulation.

Overall, we mapped a first draft of active regulatory regions

relevant to tumorigenesis in insulinoma. Our data suggest that

the genome-wide aberrant deposition of H3K27ac in these tu-

mors tends to be related to gene expression regulatory functions

and shared between patients.

Recurrent coding mutations in insulinoma are rare
In order to assess the contribution of genetic alteration to the

neoplastic transformation in insulinomas, we sequenced the



Figure 1. Mapping the transcriptome and regulatory landscape of insulinomas

(A) Summary of insulinoma samples and assays included in this study. Top rows show the sample origin and patient age and sex.

(B and D) Volcano plot of differentially expressed genes (B) and H3K27ac-enriched regions (D) in insulinomas (green) compared to untransformed human

pancreatic islets (HIs; pink). Dotted lines show thresholds for significance (|log2 fold change| > 1 and adjusted p < 0.05). Green, upregulated genes or gains in

H3K27ac; pink, downregulated genes or losses in H3K27ac; gray, stable genes or H3K27ac regions.

(C) Gene set enrichment analysis of reactome pathway terms enriched in insulinoma-selective genes (as compared to HIs) are strongly dominated by histone

modifier enzymes and chromatin remodelers.

(E) Distribution of gene expression changes in insulinoma versus HIs for transcripts in the vicinity of increasing numbers of H3K27ac regions shared with the

normal tissue (stable) or insulinoma-selective tissue (gained). Two-sided Wilcoxon test: *p < 0.05 and ***p < 0.001.

(F) Correlation of sharing and rank indexes (SIs and RIs, respectively) obtained for each TSS-distal site enriched of H3K27ac in insulinoma. SI indicates the

number of patient samples sharing a H3K27ac peak. All H3K27ac sites were additionally ranked based on their signal intensity (RI), serving as an indicator of their

clonality. This ranking was conducted given that heterogeneity within the cell population was identified as the primary determinant of H3K27ac signal intensity.21

The positive correlation observed between the two indexes suggests that in insulinoma, clonal H3K27ac sites—those that are more prevalent within the cells

composing the tumor—are also more commonly shared among different patients. Each dot represents the median RI (across all patients) for each individual

H3K27ac site. The boxplots illustrate the distribution of RI values for H3K27ac sites that share the same SI.

See also Figures S1–S3 and Tables S1, S2, and S3.
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whole genome (whole-genome sequencing [WGS]) of 13 tumors

and patient-matched peripheral blood cells. We next integrated

the newly generated data with published WGS30 and whole-

exome sequencing3,5 to obtain a large dataset (n = 40) of paired

tumor-normal samples, for 10 of which we had matching RNA-

seq and H3K27ac data (Figure 1A). We focused on samples

not carrying germline mutations in MEN1, a known insulinoma

driver gene,31 in order to facilitate the discovery of yet unde-

scribed driver mutations.

For the detection of somatic mutations in insulinomas, we

employed a standardized set of established algorithms for

alignment and variant calling (Figure S4A) and implemented

rigorous variant filtering procedures. We unveiled 24,627 sin-

gle-nucleotide variants (SNVs) and 870 small insertions or dele-

tions (indels) (626.45 ± 668.70 SNVs and 11.97 ± 14.12 indels

per tumor) (Figure S4B). Globally, we observed a low mutation

burden (median: 0.37 mutations per Mb; range: 0.06–1.98) as

compared to a large panel of tumors32 (n = 33), including

pancreatic tumors arising from the exocrine tissue (pancreatic

ductal adenocarcinoma; median: 0.98 mutations per Mb;

range: 0.03–389.27) (Figure S4C).

We next extracted and decomposed de novo mutation signa-

tures in insulinoma and found a footprint matching single base

substitution patterns previously related to aging33 (Figure S4D).

Interestingly, similar mutational patterns have been previously

described in pancreatic ductal adenocarcinoma, suggesting

that only endogenous processes likely contribute to both types

of pancreatic tumors.34

We annotated a total of 1,045 somatic mutations (1,045 SNVs

and 1 indel, 26.6 ± 22.5 variants per sample) to genomic coding

sequences (Table S4). With the exception of the previously

described YY1 T372R mutation,5,6 which appeared in 17% of

the patients in our cohort, and in linewith previous reports,3 recur-

rent coding mutations in insulinoma were rare. Nevertheless, in

multiple patient samples, we observed recurrent mutations in

several genes, namely BRD1, CFAP47, COL11A1, ZZEF1, and

RNF213, which had not been previously associated with the
Figure 2. Genomic mutation landscape in insulinomas

(A) Ranking list of the genes accumulating the highest frequency of mutated geno

sites (VREs), observed in a cohort of 40 insulinoma tumors. Only somatic varian

alterations in each gene and the category. Potential driver genes, inferred by IntOG

in at least one gene related to the histone modification pathway (GO: 0016570).

(B) Variant enrichment analysis illustrating that insulinoma somatic mutations are

well as in nonfunctional PNETs. However, no overrepresentation of these variants

primary tissues. Significant enrichment scores are shown in red (Benjamini-Hoch

the whiskers extend to 1.53 the interquartile range; the notch represents the medi

INS, insulinoma; PNET, nonfunctional pancreatic neuroendocrine tumor; EC, End

breast carcinoma; ESCA, esophageal squamous cell carcinoma; BRCA, breast c

(C) Genes associated with VREs are implicated in b-cell function and neoplastic t

Molecular Function; MP:SKO, Mouse Phenotype Single KO; MsigDB:H, Human

(D) Violin plots showing the absolute allele fold change distribution of WGS and

VREs. The data show a significant allelic skew of H3K27ac reads, indicating that

genotype. The analysis is based on 30 VREs for which both WGS and H3K27ac

(E) H3K27ac and gene expression fold change in insulinoma (insulinomamutated

triangle indicates that the mutation(s) is (are) predicted to affect the sequence by c

target gene is implicated. Genes associated to multiple VREs are depicted in bo

(F) List of TF binding sequences (TFBSs) predicted to be created (gained) or disrup

the number of modified TFBSs, while the color depicts a higher ratio of created

See also Figures S4 and S5 and Tables S4 and S5.
development of this tumor. Moreover, RNF213, an E3 ubiquitin

ligase protein, was identified as a potential driver gene through

a pipeline combining seven state-of-the-art computational

methods to identify genes under positive selection across tu-

mors35 (Figure 2A).

To build an accurate and comprehensive somatic structural

variant (SV) truth set, we used a combinatorial approach in which

we retained consistent results obtained from four independent

SV algorithms callers (see STAR Methods). To minimize the

detection of false positive alterations, we applied (1) stringent

quality control and removal of known population SVs and (2) vi-

sual validation36 (Figure S4A). We recovered a total of 146 SVs,

the majority of which (55.5%) arose from chromosomes 6, 7,

and 12 (Figure S4E; Table S4). Interestingly, within the transcripts

affected, we annotated histone modifiers and genes related to

the polycomb complex (EZH2, HDAC2, and KMT5A), as well

as others already known to be involved in insulinoma develop-

ment (INSM1 and PTPRN2) (Figures 2A and S4F; Table S4).

The impact of noncoding somatic mutations
The noncoding genome is populated by functional REs playing a

critical role in regulating gene expression and maintaining a cell-

type-specific phenotype. We thus addressed whether somatic

regulatory variants affecting noncoding REs are implicated in

driving the tumoral phenotype.

By mapping the identified somatic mutations to the newly

generated regulatory maps in insulinoma, we found an overrep-

resentation of mutations at H3K27ac sites (adjusted p < 0.02,

z = 4.64, Figure 2B). Similarly, the mutations were enriched at

H3K27ac sites active in normal b cells and PNETs. It is worth

noting that the genomic distribution of the mutations may be

driven by the tissue-specific chromatin landscape of the tumoral

cell type of origin37,38 and may not represent the result of a tu-

moral-driven positive selection process. However, this finding

presents an opportunity to explore how somatic mutations in in-

sulinoma may impact b-cell tissue-specific regulatory functions

as well as pathways involved in neoplastic processes.
mic elements, including coding exons and nearby mutated H3K27ac enriched

ts are included. Right, the number of samples affected by any of the genomic

en,35 are depicted in bold. Bottom, samples affected by any genomic alteration

enriched at H3K27ac sites active in insulinoma and its cell of origin (b cells) as

was observed in H3K27ac sites active in other types of cancer or untransformed

berg-adjusted p < 0.05). The boxplot limits show the upper and lower quartiles;

an confidence interval for distributions of matched null sets (500 permutations).

oC-bH1; HI, human pancreatic islets; OVAD, ovarian adenocarcinoma; BRCA,

arcinoma; LN, lung normal; ON, ovarian normal; SIN, small intestine normal.

ransition. GO:BP, Gene Ontology: Biological Process; GO:MF, Gene Ontology:

Molecular Signatures Database: Hallmark.

H3K27ac ChIP-seq reads carrying (ALT) or not (REF) the mutated genotype at

the histone modification deposition at VREs depends on the somatic mutation

matched data were available. Two-sided Wilcoxon test: ***p < 0.001.

versus insulinomawild type) at selected VREs and their associated transcript. A

reating or disrupting a TF binding site. Color denotes the pathway in which the

ld.

ted (lost) by somatic mutations at VREs. The size of the circle is proportional to

(green, e.g., SOX17) or disrupted (red, e.g., TP53) binding sequences.
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We thus define as a variant RE (VRE) an insulinoma or human

islet H3K27ac site bearing an insulinoma somatic mutation

(Table S5). Several observations suggest a functional role of

VREs: (1) VREs are preferentially located proximal to gene TSSs

(�40%are located<2Kb fromaTSS,p<7.4931071; FigureS5A),

(2) their sequence is, on average, more evolutionarily conserved

as compared to matched control H3K27ac sites (Figure S5B),

and (3) they are enriched for specific TF binding sites including in-

sulin gene enhancer protein (ISL-1), MAF BZIP TF A (MAFA), fork-

head box O1 (FOXO1), and SMAD family member 3 (SMAD3), a

factor related to the canonical signaling cascade of transforming

growth factor b (TGF-b) and previously described to have a role

in the development of insulinomas3 (Figure S5C). Moreover, (4)

VREs are located at the promoter or in physical proximity to genes

clearly implicated in insulinoma and tumoral developmental func-

tions, including genes already known to be implicated in insuli-

noma progression (p = 1.263 10�3), insulin response and secre-

tion (p = 5.203 10�6), glucose-6-phosphatase activity (p = 4.673

10�5), and the p53 pathway (p = 4.70 3 10�4) (Figure 2C).

To gain insight into the potential functional role of noncoding

mutations on regulatory genomic functions, we took advantage

of samples with matched WGS/ChIP-seq/RNA-seq and used

the heterozygous somaticmutations detected byWGS to assess

the relationship between genotype and both local enrichment of

H3K27ac in VREs and changes in expression of the nearby

genes. At VREs, we found a significant allelic skew for the

H3K27ac reads, whether or not they carried the somatic muta-

tion genotype, as compared with the allele frequency of the

same variant detected by WGS (p = 6.2 3 10�11; Figures 2D

and S5D). These results suggest that, in tumoral samples, differ-

ential histone modification enrichment at VREs is associated

with the somatic mutation genotype. In the same line, and further

confirming these results, we uncovered divergent H3K27ac

enrichment at VREs and differential gene expression of nearby

genes in mutated samples versus wild-type samples, i.e.,

samples lacking somatic mutations in the VRE of interest

(p = 2.22 3 10�16) (Figure S5E). We observed examples of

VREs associated with gains of H3K27ac, in mutated versus non-

mutated samples, proximal to induced genes implicated in the

insulin secretion pathway (PCSK1,39 G6PC2, and SLC30A840).

On the other hand, VREs associated with reduced H3K27ac en-

richments were proximal to downregulated genes implicated in

p53-mediated apoptosis (e.g., AEN,41 DAB2IP,42 or PHLDA343)

and in critical components of the polycomb group complex

(RING1 and JARID2), whose function is that of maintaining a

transcriptionally repressive chromatin state at specific genomic

loci (Figure 2E).

Finally, we uncovered that a significant fraction of somatic

SNVs within VREs (37%) may affect the regulatory grammar by

disrupting (e.g., TP53) or creating (e.g., SOX17) new TF binding

motif sequences, thus providing a potential mechanism linking

noncoding mutations to the promotion of tumorigenesis

(Figure 2F).

To provide a comprehensive overview of the mutational land-

scape in insulinomas, we combined all identified genetic alter-

ations, both coding and noncoding, providing an extensive set

of genes potentially implicatedwith the tumor development. (Fig-

ure 2A; Table S4; see STAR Methods). This broad view allowed
6 Cell Genomics 4, 100604, August 14, 2024
for uncovering an expected enrichment of genes involved in

the cell cycle, cell growth, and nervous development. Interest-

ingly, genes encoding histonemodifier enzymes were also found

to be enriched within those mutated in insulinomas (Figures

S5F). Overall, 92.5% of tumor samples bore a mutation affecting

at least one gene listed as a histone modifier (GO: 0016570)

(Figure 2A).

Uncovering tumor-specific regulatory domains
Motivated by the observation of an enrichment of histone

modifier enzymes within the genes mutated in insulinomas

(Figure 2A), we sought to explore the genomic distribution of

histone post-transcriptional modifications in these tumors.

Earlier studies demonstrated that large domains of H3K27ac

underlie clusters of enhancers responsible for regulating key

cell identity genes, having a functional role in disease suscep-

tibility and cancer functions.23,44,45 Furthermore, our interest

was piqued by the correlation between the number of insuli-

noma-selective REs and gene upregulation (Figure 1E),

prompting us to explore the distribution of the newly mapped

H3K27ac profiles along the genome. We found that insuli-

noma-selective H3K27ac sites were not evenly distributed

throughout the genome (Figure 3A) but instead formed 391

clusters23 (Figure S6A; Table S6; see STAR Methods), which

we called insulinoma regulatory domains (IRDs). These do-

mains contained �40% of all H3K27ac sites gained in insulino-

mas and mirrored super-enhancer chromatin features, such as

high enrichment in H3K27ac signal (Figure S6B) and stronger

changes upon insulinoma transformation compared to other in-

sulinoma-specific orphan regions (Figure 3B). Moreover, IRDs

map in the proximity of insulinoma-selective transcripts anno-

tated to functions involving growth and TGF-b binding (Fig-

ure 3C). Other enriched terms were related to GTP binding,

mainly driven by the upregulation of genes from the GTPase

IMAP family (GIMAP), which are located within an IRD homoge-

neously present in the different insulinoma samples and absent

from control human islets (Figure 3D). Of note, overexpression

of GIMAP genes has been implicated in T cell leukemogen-

esis.46 These data suggest that a subset of active enhancers

are linked with tumor growth, opening the possibility to uncover

driver regulatory mechanisms.

The enhancer sequence stores information for the TFs poten-

tially binding at accessible chromatin. To infer which TFs could

be acting through IRDs and orchestrating neoplastic transition,

we integrated open chromatin profiles from human pancreatic

islets24 and 122 ENCODE cancer cell lines with H3K27ac sites

at IRDs to identify putative nucleosome-free regions (Fig-

ure S6C; see STAR Methods). A de novo motif analysis identi-

fied 6 overrepresented motifs that matched TFs upregulated

in insulinomas (Figure 3E), which may be driving transcriptional

activity at IRDs. Such TFs include SOX17, the ETS family (ERG/

FLI1), FOS, FOXF1, EBF1, and MEF2C. Interestingly, not only

do many of these TFs seem to bind and regulate IRDs, but their

own genes are also regulated by an IRD (Figure S6D). This

observation matches the definition of core transcriptional regu-

latory circuitries (CRCs),48 in which TFs key for cell identity are

inter-connected in regulatory loops through the super-en-

hancers that regulate their own expression. We thus sought



Figure 3. IRDs consist of clusters of H3K27ac-selective sites

(A) H3K27ac insulinoma-selective (gained) sites are highly clustered, as their inter-site genomic distance is smaller than expected (random distribution, gray).

Based on this analysis, we defined 391 insulinoma regulatory domains (IRDs) (see STAR Methods).

(B) Upon transition from normal b cell to insulinoma, REs located in IRDs exhibit higher gains of H3K27ac enrichment than orphan REs. Two-sidedWilcoxon test:

***p < 0.001.

(C) Gene Ontology: Molecular Function (GO:MF) annotation of upregulated genes associated to IRDs are related to growth factor binding, TGF-b pathway, and

GTP binding. The shade of green is proportional to the gene log2 fold change.

(D) Representative view of the GIMAP locus, encoding GTPases of the immunity-associated protein family (IMAP).47 GIMAP transcripts are induced in in-

sulinomas and encompassed by a large IRD composed of more than 15 sites consistently enriched of H3K27ac in 12 different insulinoma samples (green) but

depleted of the active histone mark in untransformed HIs (pink).

(E) Top de novomotifs identified by HOMER in nucleosome-free regions (NFRs) at gained REs in IRDs. Only motifs present inmore than 1%NFRs andmatched to

an upregulated gene in insulinomas (score > 0.7) are shown.

See also Figure S6 and Table S6.
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to systematically infer sample-specific CRCs by producing pa-

tient-specific regulatory domains, uncovering that five motifs

enriched in IRDs are part of CRCs in insulinoma samples,

namely EBF1, ERG, SOX17, FLI1, and MEF2C (Figure S6E).

Of note, the SOX17 binding motif was also identified as being

recurrently created by noncoding somatic variants in VREs

(Figure 2F).

In summary, we observed insulinoma-specific activation of

clustered REs (IRDs) whose putative target genes are related

to tumoral growth and harbor recurrent binding sites primarily

for ETS and SOX17 TFs.
IRDs map to polycomb-repressed regions in healthy
human islets
Motivated by two key observations, (1) the presence of a higher

frequency of mutations affecting genes with histone modifier

functions and (2) the activation of extensive clusters of REs

(IRDs) in insulinomas, we searched for potential chromatin-

driven events in islet-cell tumor transition. To this end, we map-

ped IRDs to ChromHMM chromatin states in both untrans-

formed human pancreatic islets49 and a human b-cell line.50

Most IRDs (50%–80%) lie in regions annotated as quiescent or

actively repressed by polycomb in the untransformed tissues
Cell Genomics 4, 100604, August 14, 2024 7



Figure 4. IRDs are polycomb repressed in untransformed cell types

(A) Chromatin state annotation of IRDs based on ChromHMM computed in EndoC-bH1.

(B) Distribution of permutation test Z scores comparing the overlap of IRDs and stable REs in insulinomas with H3K27me3 peaks in b cells (BETAs), EndoC-bH1

cells (ECs), and HIs. Significant Z scores are represented as diamonds and nonsignificant ones as dots. A black line depicts the mean Z score, with error bars

representing the mean standard error.

(legend continued on next page)
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(Figures 4A and S7A). To assess whether this overlap is statisti-

cally significant, we compared our data with newly generated

and public H3K27me3 control tissue datasets,51–53 a histone

modification typically associated with polycomb repression.

Indeed, we observed that IRDs displayed positive and significant

Z scores (overlap permutation tests, n = 500, p < 0.05) (Fig-

ure 4B), suggesting that these chromatin domains were

repressed in b cells before undergoing tumor transformation.

We named this subset of IRD-localized REs that are

H3K27me3 repressed in control tissues derepressed IRDs

(DeIRDs; Table S3). Of note, these observations are further sup-

ported by previous findings suggesting that b-cell repressed

genes are transcribed in insulinoma samples.3

To measure whether DeIRDs could represent a common

mechanism in the acquisition of an insulinoma phenotype, we

took advantage of the SIs and RIs we computed for each

H3K27ac site (Figures 1F and S3C). Interestingly we observed

that DeIRDs were more clonal and more shared among patients

as compared to non-DeIRDs insulinoma REs (Figure 4C). These

findings suggest that DeIRDsmay represent a keymechanism to

activate pathways implicated in the neoplastic transformation in

insulinomas.

As DeIRDs are actively repressed in b cells, we next

wondered whether these regions have enhancer functions in

other tissues or cell types. To answer this question, we ob-

tained all ChromHMM annotations available for all cell types

and tissues in the Roadmap Epigenomics Project49 and

computed the ratio of DeIRDs overlapping enhancers versus

polycomb-repressed regions. We confirmed that DeIRDs are

preferentially annotated as polycomb repressed in pancreatic

islets (Figure 4D). Conversely, these same regions are anno-

tated as enhancers in various cell types, including neural pro-

genitors. This suggests that the pancreatic endocrine tumoral

cells may exploit regulatory networks active in other cell popu-

lations. We wondered whether the activation of these regions

could be orchestrated by the TFs identified to be acting at

IRDs (Figure 3E). We therefore assessed their expression in

all cell types annotated in the Roadmap Epigenomics Project,

categorized based on the DeIRD’s preferential annotation (pol-

ycomb repressed or enhancer) in that specific cell type

(Figures 4E and S7B). Interestingly, we observed that SOX17,

a key developmental regulator, is induced in those tissues

where DeIRDs are annotated as active enhancers. This obser-

vation suggests a pivotal role for this TF in driving insulinoma’s
(C) Distribution of RIs and SIs in insulinoma-selective REs (gained). The top plot sh

plot shows the distribution of RIs of DeIRDs compared to that of other gained R

(D) Ratio between the number of DeIRDs annotated as enhancers (Enh) and as we

Roadmap Epigenomics Project.

(E) Expression of SOX17 in Roadmap Epigenomics Project tissues in which DeIRD

Enh (ratio > 1.25). Two-sided Wilcoxon test: *p < 0.05.

(F) Immunofluorescence of an insulinoma sample showing co-staining of insulin a

chromogranin A (CHGA) or SOX17. As a comparison, we show SOX17 in exocrin

insulinoma.

(G) Simplified model illustrating the molecular mechanisms underlying insulinom

expression of chromatin modifiers, resulting in the formation of IRDs and activatio

to neoplastic transformation and other key TFs, such as SOX17. This reinforces a r

growth and survival.

See also Figure S7.
regulatory functions. We verified, in five additional insulinoma

samples, that SOX17 gene expression is induced in the tumors

compared to untransformed human pancreatic islets (Fig-

ure S7C). Immunofluorescence and immunohistochemistry

stainings confirm the nuclear localization of SOX17 at insulin-

producing tumoral cells, excluding that the signal originates

from other cell types such as endothelial cells or unaffected

exocrine pancreas (Figure 4F).

In summary, we propose a model in which coding and non-

coding mutations alter chromatin modifiers, which in turn leads

to the activation of polycomb-repressed regions and the forma-

tion of IRDs. IRDs regulate the expression of genes related to

neoplastic transformation (Figures S7D and S7E) and other key

TFs, such as SOX17 (Figure S7F), which reinforces a regulatory

loop, thus facilitating the expression of genes that promote tu-

mor cell growth and survival (Figure 4G).

DISCUSSION

Characterization of the chromatin landscape of healthy human

pancreatic islets has significantly contributed to shed light on

the molecular mechanisms that underlie glucose metabolism-

related diseases.54,55 Much less is known about changes in reg-

ulatory function affecting human islets in disease state. In this

study, we charted a first draft of clinically relevant active regula-

tory regions shared between a large cohort of patient samples.

Moreover, we characterized, for the first time, noncoding regula-

tory functions in insulin-producing neuroendocrine tumors.

We analyzed WGS somatic mutations derived from a large

cohort of insulinomas. With the notable exception of YY1, we

confirmed that recurrent coding mutations are rare. In line with

results obtained in other cancer types,26,56 we found that a large

fraction of somatic mutations fall in the noncoding genome.

Interpretation of these variants is difficult due to our limited

knowledge of the regulatory code and the lack of understanding

of disease-state noncoding functions. Furthermore, only a small

fraction of these variants are expected to have a functional role in

the acquisition of a neoplastic phenotype.

By integrating tumor-specific regulatory maps and insulinoma

somatic mutations, we observed that SNVs map preferentially to

noncoding genomic sites active in insulinoma, correlating with

the local H3K27ac signal and linked to genes primarily affecting

the insulin secretion pathway as well as oncogenes and tumor

suppressors.
ows the ratio between DeIRDs and other gained REs at each SI value. The right

Es. Two-sided Wilcoxon test: ***p < 0.001.

ak polycomb repressed (ReprPCWk) in different tissues and cell lines from the

s are preferentially annotated as polycomb repressed (Repr, ratio <�1.25) or as

nd SOX17 (left). Insulinoma DAB immunohistochemistry staining (right) against

e pancreatic tissue (bottom right). Asterisks (*) mark healthy HIs outside of the

a neoplastic transformation. Coding and noncoding mutations alter the gene

n of polycomb-repressed regions. IRDs control the expression of genes linked

egulatory loop, thus facilitating the expression of genes that promote tumor cell
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Our data suggest a complex interplay between genetic muta-

tions and epigenetic changes leading to a uniform tumoral

phenotype. We found that coding and noncoding somatic

mutations affect chromatin modifier genes, including histone de-

methylases and acetylases, as well as components of the poly-

comb and trithorax complexes. These alterations are coupled

with extensive chromatin remodeling, which included the activa-

tion of large chromatin domains that are polycomb repressed in

untransformed pancreatic islets. This pervasive reshaping of

noncoding regulatory functions leads to the activation of growth

factors and oncogenes, possibly driving the proliferative pheno-

type of the tumoral cells.

Our analyses identify key TFs playing a major role in orches-

trating the regulatory changes leading to the insulinoma pheno-

type. Genetic and epigenetic data converge on the identification

of SOX17 having a potential driving role in the insulinoma pheno-

type: (1) the gene, which is repressed in normal human pancre-

atic islets, is upregulated in insulinomas, and its locus contains

DeIRDs (Figure S7F); (2) its binding motif is recurrently created

through somatic mutations (Figure 2F); (3) SOX17 binding sites

are enriched throughout IRDs (Figure 3E); and (4) tissues in which

DeIRDs harbor active enhancers exhibit increased SOX17

expression (Figure 4E). SOX17 is a key regulator of endoderm

development that was shown to interact with the canonical

Wnt signaling pathway.57 Moreover, SOX17 has also been asso-

ciated with the regulation of insulin secretion, with its overex-

pression causing constitutive secretion of proinsulin in mice.58

In line with our findings, other works have shown a link between

chromatin remodeling complexes and SOX17 activation. For

example, deletion of the polycomb-group protein EZH2 in hu-

man embryonic stem cells was shown to lead to the derepres-

sion of developmental regulators including SOX17, resulting in

self-renewal defects and the misactivation of endoderm regula-

tory programs.59 Additionally, inhibition of EZH2 in exocrine cells

was shown to favor a shift toward a b-cell-like identity.60 Howev-

er, the association between alterations of other members of the

polycomb complex and SOX17 activation remains unexplored.

Collectively, our work implicates noncoding regulatory func-

tions in the development of islet-cell-derived tumors. By

incorporating novel noncoding regulatory maps that encom-

pass sequences critical to the loss of b-cell identity and

impaired insulin secretion, we can gain valuable insights into

the essential functions involved. Further work will be needed

to functionally delve into the impact of noncoding mutations

in insulinomas and dissect those driving the neoplastic prolifer-

ation of human b cells. Newly defined regulatory maps and in-

sulinoma somatic mutations can be visualized online along

with other islet regulatory annotations at http://pasqualilab.

upf.edu/app/isletregulome.

Limitations of the study
This study, while providing valuable insights into the genomic

landscape of human PNETs, has several limitations. Firstly,

although the sample size is relatively large for a rare disease, it

is still limited for generalizing genetic findings and has reduced

statistical power to detect driver genes and rarer variants. Addi-

tionally, the use of long-read sequencing for SV detection would

aid in the identification of complex genomic rearrangements that
10 Cell Genomics 4, 100604, August 14, 2024
shorter reads could miss. Secondly, intra-tumoral heterogeneity,

characterized by the presence of different cell types within the

tumor, significantly challenges the accurate capture of cell-

type-specific genetic and epigenetic signals. This diversity could

lead, in some cases, to sampling bias and variability in the re-

sults. For instance, we were not able to confirm insulinoma-spe-

cific FLI1 expression, while a high abundance of FLI1 protein was

observed in the endothelial cells vascularizing the tumor. Lastly,

functional studies on key regulatory TFs, such as SOX17, are

needed to confirm their role in the neoplastic transformation of

b cells. Addressing these limitations in future research will be

crucial for a deeper understanding of insulinoma development

and b-cell function.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-Histone H3 (acetyl K27)

antibody - ChIP Grade

Abcam Abcam Cat# ab4729; RRID: AB_2118291

Anti-SOX17 Neuromics Cat# GT15094-100; RRID: AB_2195648

Anti-insulin DAKO Cat# A0564, RRID: AB_10013624

Anti-trimethyl-Histone H3 (Lys27) Antibody Millipore Cat# 07-449; RRID: AB_310624

Biological samples

Human insulinoma samples Scientific Institute San Raffaele Hospital

and University Vita-Salute

https://research.hsr.it/en/clinicalresearch/

pancreastranslational-andclinical-center.htm

Critical commercial assays

AllPrep DNA/RNA extraction kit Qiagen ID: 80204

QIAamp DNA Mini Kit Qiagen ID: 51304

Deposited data

Raw and processed data This paper EGA: EGAS50000000319, EGAS50000000320,

EGAS50000000321

Human reference genome UCSC hg38 UCSC https://hgdownload.soe.ucsc.edu/

goldenPath/hg38

Human reference gene annotation

Gencode v38

Gencode https://www.gencodegenes.org/

human/release_38.html

Human islet and beta cell samples Other publications Table S7

Software and algorithms

Code & intermediate data This paper Zenodo: https://doi.org/10.5281/zenodo.10400940

Salmon Patro et al.61 https://combinelab.github.io/salmon/

Bowtie2 Langmead and Salzberg62 https://bowtie-bio.sourceforge.net/

bowtie2/index.shtml

MACS2 Zhang et al.63 https://github.com/macs3-project/MACS

DESeq2 Love et al.64 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

BWA Li and Durbin65 https://biobwa.sourceforge.net/

Strelka2 Kim et al.66 https://github.com/Illumina/strelka

Mutect2 Benjamin et al.67 https://gatk.broadinstitute.org/hc/en-us/

articles/360037593851-Mutect2

IntOGen Gonzalez-Perez et al.35 https://www.intogen.org/

regioneR Gel et al.68 https://bioconductor.org/packages/

release/bioc/html/regioneR.html

HOMER Heinz et al.69 http://homer.ucsd.edu/homer/index.html
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Lorenzo

Pasquali (lorenzo.pasquali@upf.edu).

Materials availability
This study did not generate new unique reagents.
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Data and code availability
RNA-seq, H3K27ac ChIP-seq, and WGS data generated in this publication have been deposited at EGA with the IDs

EGAS50000000320, EGAS50000000319, and EGAS50000000321, respectively.

All original code has been deposited at Zenodo (https://doi.org/10.5281/zenodo.10400940).

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Insulinoma samples were obtained from subjects who provided informed consent deposited at the Istituto Scientifico Ospedale San

Raffaele, Milan, Italy. The study was approved under the protocol DiabPanc (P242/ER/mm) by the Ethical Committee of the Istituto

Scientifico Ospedale San Raffaele. All experiments, conducted in accordance with the Declaration of Helsinki, were performed

following procedures approved by the institutional research committees of the Institute for Health Science Research Germans Trias

i Pujol, Barcelona, Spain (PI/15/051). All patients or their parents gave informed consent and all samples and data were handled pro-

tecting patients’ privacy. Patients sample details are provided in Table S1.

The samples were obtained upon removal of the tumor without interfering with the clinical patient management. A tumor mass

measuring 4–6 cm3 was extracted from the resected insulinoma. A portion of each tumor mass was frozen for transcriptomic and

genome sequence analysis, while another fraction was preserved using 1% formaldehyde to maintain the DNA-protein contacts

for subsequent ChIP-seq assays. Whole blood was also collected from each patient, serving as a source of germline DNA.

Additionally, 3 insulinoma tumor specimens from formalin-fixed paraffin-embedded blocks, were obtained fromParc de SalutMAR

Biobank (MARBiobanc), Barcelona, Spain (2023S017E) and used for staining analyses.

Human pancreatic islet cells were isolated from donors in asystole or cardiorespiratory arrest (controlled asystole donation),

without a history of alteration of the glucose metabolism, in accordance with national laws and institutional ethical requirements

at the Hospital Universitari de Bellvitge, Barcelona, Spain. The cells were shipped in culture medium and then cultured for 72h before

undergoing experimental procedures.

METHOD DETAILS

RNA-seq
RNAwas extracted from 11 frozen tumor samples using the AllPrep DNA/RNA extraction kit (Qiagen) resulting in >60 ng/mL yields per

sample and RNA integrity numbers (RIN) > 7.0. RNA libraries were prepared by ribosomal RNA depletion and were sequenced on a

HiSeq 2000 platform (Illumina) to produce 150 bp paired-end reads with an average of 95 million reads per sample.

ChIP-seq and Cut&Tag
ChIP-seq was conducted using tagmentation (ChIPmentation), following a previously described method.70 The samples fixed with

1% formaldehyde were sonicated to achieve an average fragment size of approximately 200bp. Immunoprecipitation was performed

on 35mg of chromatin in a 0.4% SDS IP buffer using 1.5mL of anti-H3K27ac antibody (abcam ab4729) and 50mL of 10% BSA. After

incubation, the immunoprecipitated DNA fragments were hybridized to protein A + G beads and then washed using low-salt, high-

salt, and LiCl wash buffers. Subsequently, the IPs underwent a 10-min incubation with 1mL of Tagment DNA enzyme, followed by

additional washes with RIPA and Tris-EDTA buffers. To generate ChIP libraries, elution was performed using a 1% SDS, 0.1M

NaHCO3 buffer. Two mL of each library were amplified in a 10 mL qPCR reaction containing 0.15 mM primers, 1 3 SYBR Green

and 5 mL NEBNext High-Fidelity 2X PCR Master Mix (NEB M0541S), to estimate the optimum number of enrichment cycles needed

for library amplification. The libraries were then amplified using the Nextera DNA Library Prep Kit (15028212, Illumina, San Diego,

USA). Semi-quantitative PCR assays at target positive and negative control sites were performed to estimate the efficiency of the

ChIP experiment before sequencing (data not shown). Finally, sequencing of the ChIP libraries was carried out using a single-end

protocol with 50bp reads, with a minimum of 30 million.

Cut&Tag was used to profile H3K27me3 in HI and EC and was performed as previously described.71 For human islets, we first dis-

aggregated them into single cells using trypsin. All incubations at 4�Cor room temperaturewereperformedona rotatingwheel. Briefly,

cellswereharvested, counted, andwashed inWashBuffer. Duringwashes,weactivated theConAcoatedmagnetic beadsbywashing

themwith Binding buffer and resuspended in 1 volume of binding buffer before incubation with the cells. In each experiment, 100,000

cells and 10 mL of beads were used. Next, bead-bound cells were resuspended in 50 mL ice-cold Antibody buffer and transferred to a

LoBind tube. Primary antibody against H3K27me3 (Millipore, #07–449) was added 1:100 and incubated overnight at 4�C. Afterward,

samples were incubated with the secondary antibody (Antibodies Online, #ABIN101961) diluted 1:100 in Dig-wash buffer and incu-

bated at room temperature for 1h. Cells were washed with Dig-wash buffer and incubated with a mix of pA-Tn5 adapter complex

(Cutana, #15–1017) in Dig-300 buffer at room temperature for 1h. After incubation, beads were washed with Dig-300 buffer, resus-

pended in 300 mL of Tagmentation buffer and incubated at 37�C for 1h. Then, the tagmentation was stopped and decrosslinking

was performed before DNA purification. The DNAwas purified by phenol-chloroform extraction and 21 mLwere used for library ampli-

fication, performed as described in the original protocol. Post-PCR clean-up was performed by adding 1.3Xof Ampure XP beads

(Agencourt AMPureXP, Beckman-Coulter, #A63880) and samples were eluted in 25 mL 10 mM Tris-HCl pH 8.
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WGS
DNA was extracted using QIAamp DNA mini kit (Qiagen) according to the manufacturer’s instructions. DNA quality was assessed

using Nanodrop (Thermo Fisher Scientific) and quantified using Qubit (Thermo Fisher Scientific) technology.

Immunofluorescence and immunohistochemistry stainings
Insulinoma samples were embedded in OCT. Samples were sectioned at 4–5 mM prior to immunostaining. For Immunofluorescence

stainings, tissue sections were fixed with 4% PFA for 20 min at 4�C, washed with PBS and blocked in 0.5% (v/v) Triton PBS, 1% (v/v)

FBS PBS for 30 min at room temperature. Incubation with primary antibodies (anti-Insulin: DAKO A0564, anti-SOX17: Neuromics

GT15094) was performed overnight at 4�C in 0.5% (v/v) Triton PBS. Samples were washed with PBS for 30 min at 4�C before incu-

bation with secondary antibodies for 2h at 4�C. Lastly, samples were stained for nuclei with DAPI.

For immunohistochemical stainings, tissue sections were dewaxed and rehydrated (2x xylol 5min, 2x EtOH 100% 5min, 2x EtOH

96%3min, EtOH 70%3min, 5min dH2O) before performing antigel retrieval in ph6 citrate buffer in a decloaking chamber. Then, tissue

sections were permeabilized with 0.25% (v/v) Triton PBS for 20 min at room temperature and blocked in 1% (v/v) donkey-serum for

30 min at room temperature. Incubation with primary antibodies was performed overnight at 4�C prior to incubation with secondary-

HRP conjugated antibody for 1h at RT. Staining was performed with DAB Peroxidase Substrate Kit (Liquid DAB+Substrate Chro-

mogen System, Dako), following manufacturers instruction.

Epifluorescent images were acquired on a ZeissAxio_ObserverZ1_Apotome inverted fluorescent microscope. Brightfield images

were taken on a LeicaZ16 APO stereomicroscope.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-seq
Reads were aligned to gencode version 38 using Salmon61 (version 1.3.0). We loaded the results into R using tximport72 (version

1.26.0), summarized transcript information into genes and kept protein-coding genes located in autosomes for downstream ana-

lyses. We also downloaded published RNA-seq samples from insulinomas and from human islets and beta cells to use as compar-

ison, which were processed in the same manner (Table S7).

ChIP-seq and Cut&Tag
Reads were mapped to hg38 using Bowtie262 (version 2.4.1) with the ‘‘–local’’ parameter in the case of ChIP-seq and with ‘‘–very-

sensitive –no-mixed –no-discordant –phred33 -I 10 -x 100’’, in the case of Cut&Tag. Next, we removed duplicates and readsmapping

to non-cannonical chromosomes or to ENCODE blacklisted regions using Samtools73 (version 1.10). We performed peak calling us-

ing MACS263 (version 2.2.7.1) with arguments ‘‘–broad –broadcutoff 0.1 –nomodel’’.

Additionally to the data generated in the current study, publicly available H3K27ac ChIP-seq raw data from human islets, other

cancers, cell lines and normal tissues were downloaded and processed in the same manner. The full list with references of the em-

ployed datasets are listed in Table S7.

Consensus H3K27ac sites
We retained all peaks located in autosomes and called with -log10 p-value >4 and used the R package DiffBind74 (version 3.8.3) to

create consensus peaksets in different ways.

(1) Stringent consensus dataset: The consensus peaksets for the comparison of insulinomas vs. human islets, and the diverse

H3K27ac heatmaps were obtained by selecting in a tissue-specific manner those regions present in more than 30% of the

samples. Then, tissue-specific consensus peaks were merged together.

(2) Comprehensive consensus dataset: The consensus peakset used for the variance analysis (Figure S3B), as well as the re-

gion set that was contrasted with the insulinoma somatic SNVs in order to identify VREs, were created by merging together all

peaks in all samples, without filtering for recurrence.

Toobtain thenumberof reads ineachpeakweemployed the function featureCounts() from theRsubread75Rpackage (version2.12.3).

Differential analysis of RNA-seq and ChIP-seq
To perform differential analyses in our genomic data we used DESeq264 with default parameters (version 1.38.1). In order to decide

which technical parameters to include as variables in the differential analysis designs, we used the degCovariates function from the

DEGreport76 R package (version 1.34.0). Our final design for identifying differentially expressed genes from RNA-seq data included

the biological variables ‘‘sex’’ and ‘‘age group’’ (created with cut() and breaks = 3), the technical variables ‘‘alignment rate’’ and

‘‘amount of mitochondrial reads’’ as well as the variable ‘‘tissue’’, which is the one used to extract the differentially expressed genes.

For ChIP-seq data we found that none of the analyzed technical covariates were correlated with any PC. Thus, our final design for

identifying differential ChIP-seq enrichments included the biological variables ‘‘sex’’ and ‘‘age group’’ (created with cut() and breaks =

3) and the variable tissue, which is the one used to extract the differentially acetylated regions.
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Genes/regions were considered significantly gainedwhen adjusted p-value <0.05 and log2 fold change > 1, significantly lostwhen

adjusted p-value <0.05 and log2 fold change <�1 and stable if they did not pass these thresholds. Of note, all downstream analyses

were performed on insulinoma-selective genes and sites (gained), thus excluding signals that could arise from non b-cell types popu-

lating the normal endocrine pancreas.

Data normalization and transformation
When needed, sequencing data was transformed using the variance stabilizing transformation (VST)method implemented as the vst()

function in the DESeq264 R package with default parameters.

Assigning regulatory elements to target genes
Chromatin analyses:

(1) Figure 1E: To assign RE to putative target genes in an unbiased manner, we designed a hybrid approach that used fixed-size

windows (40kb around TSS) and double elite interactions present in the GeneHancer database.77

(2) Figure 3C: REs were annotated using fixed-size windows (40kb around TSS) to genes up-regulated in insulinomas compared

to human islets.

VREs: All VREs were annotated to genes whose TSS was closer than 5 kb upstream and 1 kb downstream. Additionally, they were

annotated to the nearest upstream and downstream gene TSS within a 1 Mb distance (similar to the default algorithm used in

GREAT78).

Sharing and rank indexes
In order to infer whether theH3K27ac epigenetic hallmarkwas shared between different patient samples (inter-sample heterogeneity)

and representative of the major sample cell clones (intra-sample heterogeneity) we computed sharing indexes (SI) and rank indexes

(RI) as previously described.21 Briefly, SI is produced by annotating the number of patients sharing each H3K27ac enriched site and

RI is generated by ranking these regions by their signal intensity. The rationale of the RI metrics stands on the observation that het-

erogeneity within the cell population was demonstrated to be the major contributor to H3K27ac signal intensity.21 The code is imple-

mented in the function get_ranking_sharing_index() in our custom meowmics R package (https://github.com/mireia-bioinfo/

meowmics).

Whole-genome sequencing
Illumina NovaSeq 6000 technology was used to sequence whole-genome 150 bp paired-end TruSeq PCR-free libraries. The raw

sequencing data was aligned with BWA-MEM65 (version 0.7.17) to the NCBI Human Reference Genome Build hg38. Duplicates

were marked using samblaster (version 0.1.24) and BAMs were sorted and indexed using Samtools73 (version 1.9). Samtools depth

was employed to calculate alignment and coverage metrics, revealing a mean read depth of 37x±5x for peripheral blood cells and

58x±7x for tumor samples.

Additionally to the 26 whole genome sequence (WGS) generated in this study, the raw reads of 14 WGS from Scarpa et al.,30 20

whole exome sequencing (WES) from Wang et al.3 and 20 WES from Cao et al.5 including insulinoma and matched blood samples

were downloaded and processed in the same way in order to enable an homogeneous variant calling over 40 insulinoma samples.

Somatic variant calling and filtering
SNVs (Single Nucleotide Variants) and INDELs (Insertions and Deletions) were identified using Strelka266 (version 2.9.10) and Mu-

tect267 (version 2.23.0) with default settings. Tumor and matched blood sequencing data were used to remove germinal variants.

Following the recommended best practice, Strelka2 was executed incorporating the candidate indel generated by manta79 (version

1.6.0). Only ‘‘PASS’’ variants in Variant Call Format (VCFs) resulting from both callers algorithms were included. Variants present in

cohort-specific Panel of Normals and in gnomAD80 (version 3.1) with a VAF >0.001 were removed. Additionally, variants within UCSC

Common set. dbSNP15081 and/or segmental duplications, simple repeats and masked regions were also excluded. The resulting

VCFs were annotated using ANNOVAR82 (version 2020Jun08) (Figure S4A).

We next used IntOGen,35 to discover insulinoma coding driver genes by inferring signals of positive selection as previously

described.

Insulinomas single nucleotide somatic mutations (n = 25.497), were mapped to a consensus datasets of H3K27ac sites active in

insulinomas and its normal tissue counterpart (see ‘‘ChIP-seq and Cut&Tag’’ section) resulting in 1,640 insulinoma variant regulatory

elements (VREs).

Tumor mutational burden (TMB)
ANNOVAR annotated VCF were converted to MAF using the annovarToMaf from maftools83 R package (version 2.16.0). tcgaCom-

pare maftools function was used to calculate the TMB of all the datasets. Comparative plots were generated using the tcgaCompare

function.
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Mutational signatures
Extraction of SBS and ID signatures was performed using SigProfilerExtractor84 (version 1.1.4), which employs NMF to extract

optimal number of mutational signatures in a given cohort of tumors. Signatures were extracted the novo and decomposed based

on Catalog of Somatic Mutations in Cancer (COSMIC)85 (version 3) using a cosine similarity greater than 0.9.

Structural variant calling
SVs were called using Delly86 (version 1.1.6), GRIDSS87 (version 2.11.1-1), Manta79 (version 1.6.0), Smoove (https://github.com/

brentp/smoove) (version 0.2.8) in a somatic configuration. GRIDSS SVs were post-annotated as DEL, DUP, INV, INS and BND

with sv_type_infer_gridss.R script provided in GRIDSS. ‘‘PASS’’ variants were annotated using Duphold88 based on Duphold’s flank-

ing fold change (DHFFC) annotation. Deletions with a DHFFC value greater than 0.7 and duplications with a value less than 1.25 were

excluded. ENCODE DAC blacklist was used to remove regions with anomalous, unstructured and high signal/read counts. ‘‘PASS’’

variants identified in all 4 callers were included.

Population SVs were inferred from 1,000G catalog. To this end 2,504 low-coverage BAMs were downloaded from the 1,000 ge-

nomes AWS S3 bucket (s3://1000genomes/phase3/data/) to build a control reference STIX database using excord (version 0.2.4)

(https://github.com/brentp/excord), giggle89 (version 0.6.3) and STIX89 (version 1.0). First, SV alignment evidence was extracted

from BAM using excord, considering both discordand and split reads (discordant distance = 500). Next indexes for each excord ev-

idence were generated by giggle. Finally, the database was created using STIX as described elsewhere.89 The same procedure was

applied to the patient sample cohort to obtain an insulinoma STIX database.

We contrasted ‘‘PASS’’ SV variants obtained from the two datasets and removed SVs with evidence of >10 counts in 1000 Ge-

nomes (considered population variants) as well as those with >1 counts in the insulinoma control cohort (considered germline SV).

Samplot36 (version 1.3.0) was used to generate the images for each SV and remaining SVs variants weremanually curated creating

the final SV dataset.

SVs were annotated using the annotation fromGENCODE (release 18).90 SVs affecting coding sequences were annotated as CDS

SVs. Non-CDS SV were assigned to genes with a TSS at <1Mb distance.

Variants enrichment analysis
Weused the regioneR68 R package v.1.32.0 to assess the enrichment of insulinoma single nucleotide somatic mutations in relation to

overlapping H3K27ac enriched sites mapped in insulinomas, as well as in other cancer types, primary tissue types, or cell lines. The

H3K27ac raw data from all datasets underwent uniform processing, as detailed in the "ChIP-seq" methods section.

A null distribution was generated by permuting 500 times a set of regions matched in size and structure to the original H3K27ac

region dataset. The number of insulinoma single nucleotide somatic mutations overlapping the H3K27ac dataset was computed and

comparedwith the intersections obtainedwith thematched null distribution. The enrichment score was determined bymeasuring the

number of standard deviations that the overlapping count differs from the median of the null overlapping count. Subsequently, the

exact p-value was computed by fitting a density function to the null distribution obtained from the matched random variant set.

Finally, this p-value underwent correction for multiple testing using the Benjamini–Hochberg method. Enrichments or depletions

with a Benjamini–Hochberg-adjusted p < 0.05 were considered statistically significant and with marked as red dots (Figure 2B).

Differential H3K27ac enrichment at VREs and nearby gene expression analysis
In each sample the number of aligned reads containing either the REF or ALT alleles of an SNV was determined for each H3K27ac-

WGSmatched BAM pair using Rsamtools91 (version 2.16.0). Only SNV overlapped by aminimum of 4 H3K27ac reads were retained.

Reads retrieved from WGS and H3K27ac were used to separately calculate the absolute log2FCs between reads of REF and ALT

alleles (Figure 2D).

Differential H3K27ac enrichment was computed at each VRE computing the absolute log2FCH3K27ac signal betweenmutated vs.

wildtype samples. As a control, the same calculation was performed after randomizing the sample genotypes (number of permuta-

tion = 500). RNA differential analysis was conducted in a similar manner. In this case, RNA-seq reads from the closest VRE transcript

were used to calculate absolute log2 fold changes (Figure S5E).

Conservation analysis
Peaks were extended from the center 1Kb to each direction. Mean phylogenetic conservation scores were computed over 20 bp

segments, using values obtained from the phastCons100way dataset92 (Figures S2F and S5E).

Oncoplot
Somatic variants, including SNVs/INDELs, VREs and SVs (described in ‘‘Somatic variant calling and filtering’’, ‘‘Structural variant call-

ing,’’ and ‘‘Assigning regulatory elements to target genes’’) were summarized using custom scripts and plotted into an oncoplot using

the ggplot293 (version 3.4.3) R package. Genes with mutations observed in a minimum of three samples and/or exhibiting a recurrent

VRE (same regulatory element affected across multiple samples) were included in the heatmap. Driver coding mutations, denoted in

bold, were inferred by IntOGen as described in ‘‘Somatic variant calling and filtering’’.
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Pathway enrichment analyses
GSEA of up-regulated genes in insulinomas was performed using the fgsea94 R package (version 1.24.0) with MSigDB annotations

(version 7.4).

Pathway enrichment analysis of regulatory elements was conducted using rGREAT78 (version 2.2.0) R package. The hallmark gene

sets were retrieved from the Molecular Signatures Database (MSigDB) using msigdb:H rGREAT collection.

Enrichment of GeneOntologyMolecular Function (GO-MF) terms in gained genes associated to IRD and VREswas assessed using

the function enrichGO from the clusterProfiler95 R package (version 4.6.2). The results were plotted using the cnetplot function from

the enrichplot96 R package (version 1.18.4).

Insulinoma Regulatory Domains
Regulatory Domains were identified as previously described.23 The code is implemented in the function get_enhancer_clusters() in

our custom meowmics R package (https://github.com/mireia-bioinfo/meowmics). Briefly, we selected gained H3K27ac sites and

randomized them within their chromosome to derive chromosome-specific thresholds (10th percentile of the random distribution)

for stitching together H3K27ac sites into domains. We selected domains containing at least 3 H3K27ac sites.

Sequence composition and transcription factor analyses
A collection of ATAC-seq data from 122 human cell lines obtained from the ENCODE portal and including experiments performed on

human islets cells from a previous publication,24 were used to generate a comprehensive database of regions of open chromatin

representative of different human cell types. Each peak summit was extended 200bp upstream and downstream of the center to

define Nucleosome Free Regions (NFRs).

NFRs overlapping distal REs in IRDs (Figure 3E) were used as input for de novo motif analysis with HOMER69 (version 4.11) find-

MotifGenome.pl tool, using parameters ‘-size 200 -mask -preparsed’. Matched genes for the overrepresented sequences were

selected as described in the figure legends. The same parameters were used to infer de novo TF binding motif in VREs (Figure S5C).

Prediction of TF binding sites disrupted or created by SNVs in VREswas performed usingmotifbreakR97 (version 2.14.2) R package

and the HOMER motif data source from the MotifDb98 (version 1.42.0).

Core transcriptional regulatory circuitry
Interconnected circuitries of transcription factors acting in insulinomas were generated using the CRCmapper.48 H3K27ac ChIP-seq

reads, H3K27ac sites, and sample-specific IRDs were used as input. Briefly, the algorithm first assigns clusters of enhancers to the

closest gene predicted to be expressed. Then, identifies the candidate core transcription factors from the genes linked to IRDs, and

subsequently performs a known motif analysis using the H3K27ac sites. Finally, identifies auto-regulated TFs, and those that are

binding IRDs generating a fully interconnected auto-regulatory loop. The original code has been edited to support genome

GRCh38 build and alternative islet-specific TFs motif matrices were included in the database of positional weight matrices

(PWMs). The enhanced version, also implemented as a Singularity image, is available at https://github.com/mireia-bioinfo/

CRCmapper.

Overlap with H3K27me3 regions
Overlap between individual H3K27me3 peaks (publicly available51–53 or generated in the present study, processed as described in

‘‘ChIP-seq and Cut&Tag’’) and the RE composing the IRDs was computed. To contrast expected and observed overlap, we re-

sampled the annotation coordinates 500 times using regioneR68 R package (version 1.30.0). We annotated as DeIRDs those RE

that overlapped at least one H3K27me3 dataset.

Roadmap Epigenomics Project ChromHMM and gene expression data
ChromHMMannotation and processed H3K27me3 peak files fromHI49 and EC50 were downloaded from the respective sources. The

function liftOver() from rtracklayer99 R package (version 1.58.0) was used to convert the coordinates to hg38. ChromHMM datasets

were mapped to the RE composing IRDs.

15-state ChromHMM data from the Roadmap Epigenomics Project49 were downloaded from their source (egg2.wustl.edu). We

selected states ‘‘7_Enh’’ to represent ‘‘enhancers’’ and ‘‘14_ReprPCWk’’ to represent ‘‘polycomb-repressed’’ regions. ‘‘Enh/

Repr’’ ratios were calculated and converted to log2 for plotting. Regionswere classified as predominantly ‘‘Enhancers’’ when the ratio

‘‘Enh/Repr’’ > 1.25 and predominantly ‘‘Repressed’’ when ratio ‘‘Enh/Repr’’ < �1.25.

Gene expression from 57 epigenomes was downloaded from the same source. Counts were normalized using DESeq2.64
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