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Research and Welbio, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium. 3Biological Sciences Division, Pacific Northwest National 
Laboratory, Richland, WA, USA. 4JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of 
Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK. 5Department of Clinical and Experimental Medicine,  University of 
Pisa, Pisa, Italy. 6Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy. 7Josep Carreras Leukaemia Research Institute, Barcelona, Spain. 
8Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain. 9Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain. 10Physiological 
Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain. 11CIBER de Diabetes y Enfermedades 
Metabólicas Asociadas, Barcelona, Spain. *e-mail: lpasquali@igtp.cat

In T1D, early inflammation of the pancreatic islets (insulitis) by 
T and B cells contributes to both the primary induction and 
secondary amplification of the immune assault, with inflamma-

tory mediators such as the cytokines interleukin-1β (IL-1β) and 
interferon-γ (IFN-γ) contributing to the functional suppression and 
apoptosis of β cells1–3.

Genome-wide association studies (GWAS) have made a sub-
stantial contribution to the knowledge of T1D genetic architec-
ture, uncovering >60 regions containing thousands of associated 
genetic variants. Nevertheless, translating variants to function is a 
main challenge for T1D and other complex diseases. Most of the 
associated variants do not reside in coding regions4, suggesting that 
they may influence transcript regulation rather than altering pro-
tein coding sequences. Recent studies showed a primary enrich-
ment of T1D association signals in T- and B-cell enhancers4,5. A 
secondary5, or a lack of enrichment, was instead observed in islet 
regulatory regions. While such observation points to a major role 
of the immune system, we hypothesize that a subset of T1D vari-
ants may also act at the β-cell level but only manifest on islet cell 
perturbation and are thus not captured by the current maps of islet 
regulatory elements.

We have now mapped inflammation-induced cis-regulatory net-
works, transcripts, proteins and three-dimensional (3D) chromatin 
structure changes in human β cells (Fig. 1a). We leverage these data 

to reveal functional T1D genetic variants as well as key candidate 
genes and regulatory pathways contributing to β-cell autoimmune 
destruction. Such analyses permit elucidation of the role of gene 
regulation and its interaction with T1D genetics in the context of 
the autoimmune reaction that drives β-cell death.

Results
Proinflammatory cytokines impact the β-cell chromatin land-
scape. To characterize the effect of proinflammatory cytokines 
on the β-cell regulatory landscape, we first mapped all accessible 
or open chromatin sites in human pancreatic islets exposed or 
unexposed to IFN-γ and IL-1β. We assayed chromatin accessibil-
ity by assay for transposase-accessible chromatin using sequenc-
ing (ATAC-seq) and, to focus on the β-cell fraction and decrease 
interindividual variability, in parallel with human pancreatic islet 
assays, we performed ATAC-seq in the clonal human β-cell line 
EndoC-βH1 (EC)6, exposed or unexposed to the proinflamma-
tory cytokines (overall number of peaks identified in human islets: 
92,610–229,588; in EC cells: 52,735–110,715; see Extended Data 
Fig. 1a). Such experiments revealed an important remodeling of 
β-cell chromatin resulting in approximately 12,500 highly confident 
chromatin sites that gained accessibility (false discovery rate (FDR)-
adjusted P < 0.05; log2 fold change > 1; Extended Data Fig. 1b) on 
exposure to proinflammatory cytokines. Importantly, the changes 
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observed in the human β-cell line were concordant with those 
observed in the human islet preparations (Extended Data Fig. 1c).

We reasoned that changes in chromatin accessibility may reflect 
the activation of noncoding cis-regulatory elements. Thus, we used 
chromatin immunoprecipitation with sequencing (ChIP-seq) to 
map cytokine-induced changes in H3K27ac (Extended Data Fig. 1a),  
a key histone modification associated with active cis-regulatory  
elements shown to be dynamically regulated in response to acute 
stimulation7. We observed genome-wide deposition of the active his-
tone modification mark on exposure to proinflammatory cytokines 
in both EC and human pancreatic islets (Extended Data Fig. 1b,c).

Integrative analysis of ATAC-seq and ChIP-seq indicates that 
changes in chromatin accessibility are strongly correlated with 
deposition of H3K27ac (P < 2 × 10−16, r2 = 0.63) allowing the iden-
tification of approximately 3,800 open chromatin regions that 
gained H3K27ac (FDR-adjusted P < 0.05; log2 fold change >1) on 
exposure to proinflammatory cytokines (Fig. 1b and Extended Data 
Fig. 1d). We found that this subset of open chromatin regions is 
preferentially located distally to gene transcription start sites (TSS) 
(Extended Data Fig. 1e), and their sequence is evolutionarily con-
served (Extended Data Fig. 1f) and enriched for specific tran-
scription factor binding sites (Extended Data Fig. 1g). We named 
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Fig. 1 | Proinflammatory cytokine exposure causes profound remodeling of the β-cell regulatory landscape. a, Summary of the experimental design. 
The number of EC and human pancreatic islet (HI) samples used in different assays is shown. b, Correlation between chromatin accessibility and 
H3K27ac deposition; each dot corresponds to a chromatin site. The point fill refers to the ATAC-seq; the border refers to the H3K27ac classification 
(green = gained; red = lost; gray = stable). The dashed box depicts the regulatory elements (IREs) and the lighter shade of green depicts a subtype 
named neo-IREs (see text). c, Correlation between changes in RNA expression and protein abundance in EC cells. The point fill and border indicate 
the classification of RNA-seq and proteins, respectively (upregulated = green; downregulated = red; equally regulated = gray). d, Genes proximal to 
the IREs (see Methods) show cytokine-induced expression in EC cells exposed or unexposed to proinflammatory treatment. CYT = cytokine-exposed. 
Two-sided Wilcoxon test ***P < 0.001. The boxplot limits show the upper and lower quartiles; the whiskers extend to 1.5× the interquartile range. 
e, Translation of proteins encoded by IRE-associated genes is induced by cytokine exposure in EC cells. This is shown by the significantly different 
(two-sided Wilcoxon test P < 2 × 10−16) log2 fold change distribution of protein abundance obtained after cytokine exposure for proteins encoded 
by genes associated with IREs or SREs. f, Representative view of the GBP4 and GBP5 genes, encoding the IFN-inducible guanylate binding proteins, 
illustrating their upregulation on cytokine exposure and the nearby induction of IREs characterized by gains in chromatin accessibility and enrichment 
in H3K27ac (green boxes).
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these newly mapped regions induced regulatory elements (IREs) 
(Supplementary Table 1 and Supplementary Table 2).

Chromatin changes link to variation in transcription and trans-
lation. We next explored whether the newly identified IREs were 
associated with changes in gene expression and protein translation. 
To identify β-cell transcripts and proteins induced by the proinflam-
matory cytokines, we assayed gene expression by RNA sequencing 
(RNA-seq; five replicates in EC and five replicates in human pan-
creatic islets8; see Extended Data Fig. 1a) and collected multiplex 
proteomics data for three EC replicates after exposure or lack of 
exposure to proinflammatory cytokines.

In line with the chromatin assays, which indicated extensive gene 
regulatory activation, we unraveled cytokine-induced transcriptional 
activation resulting in approximately 1,200 upregulated genes (FDR-
adjusted P < 0.05; log2 fold change >1; Extended Data Fig. 2a,b).  
By multiplex proteomics, after rigorous filtering, a subset of 10,166 
proteins was confidently quantified and retained for significance 
testing. A total of 348 proteins displayed significant changes in 
abundance (FDR/Q < 0.15 and absolute fold change >1.5; abso-
lute log2 fold change > 0.58). Of the overall detected proteins, 
2.19% were upregulated (Extended Data Fig. 2c), 76% of which 
had induced messenger RNA levels at 48 h, confirming consistency 
between RNA-seq and protein changes (r2 = 0.72, P < 2 × 10−16; 
Fig. 1c). Protein–protein interactions inferred from β-cell cyto-
kine-induced proteins resulted in a network more connected 
than expected by chance (P < 10−3) and significantly enriched for 
Molecular Signatures Database (http://software.broadinstitute.org/
gsea/msigdb/) pathways including IFN-γ signaling, antigen pro-
cessing and presentation, apoptosis and T1D (Kyoto Encyclopedia 
of Genes and Genomes T1D P = 7.9 × 10−8; Extended Data Fig. 2d).

As expected, we found that IREs were linked to the upregula-
tion of the nearby gene(s) as well as to an induced abundance of 
the corresponding protein (Fig. 1d,e and Extended Data Fig. 2e). 
Moreover, gene induction was highly correlated with the number of 
associated IREs, suggesting a cumulative effect of IREs on cytokine-
induced changes in gene expression (Extended Data Fig. 2f).

Taken together, these findings reveal that the pancreatic β-cell 
response to proinflammatory cytokines is dynamic, involving 
extensive chromatin remodeling and profound changes in the regu-
latory landscape (Fig. 1f and Extended Data Fig. 2g). Such changes 
are associated with induction of transcription and protein trans-
lation including pathways implicated in the pathogenesis of T1D. 
Newly defined regulatory maps can be visualized online along with 
other islet regulatory annotations at www.isletregulome.org.

Primed and neo-regulatory elements mediate cytokine response. 
We next sought to gain an insight into the dynamic activation of 
IREs. The relationship between chromatin openness and H3K27ac 
deposition on exposure to proinflammatory cytokines allows the 
distinction of two classes of IREs (Fig. 1b and Fig. 2a–c): opening 
IREs (n = 2,436), which gain both chromatin accessibility (log2 fold 
change > 1) and H3K27ac (log2 fold change > 1); and primed IREs 
(n = 1,362), which are already accessible chromatin sites before 
treatment (ATAC-seq log2 fold change < 1) and gain H3K27ac 
(log2 fold change > 1) on exposure to the stimulus. Primed and 
opening IREs are both associated with gene expression induction 
(Extended Data Fig. 3a), are phylogenetically conserved (Extended 
Data Fig. 3b) and preferentially map distally relative to a gene’s TSS 
(Extended Data Fig. 3c). We further revealed that 70% of open-
ing IREs (n = 1,716), before cytokine exposure, are inactive and 
inaccessible (that is, undetectable by ATAC-seq under basal con-
ditions; see Methods). We named the latter neo-IREs. Neo-IREs 
represent 45% of all IREs and may mirror a class of regulatory ele-
ments identified on stimulation of mouse macrophages and named  
‘latent enhancers’7.

Because chromatin openness, the feature distinguishing the two 
classes of IREs, is believed to reflect transcription factor occupancy, 
we analyzed their sequence composition in search of recognition 
sequences of key transcription factors orchestrating the β-cell 
response to proinflammatory cytokines. Even though IREs are 
mostly distal to TSS (Extended Data Fig. 3c), to reduce sequence 
bias, we excluded all annotated promoters from this analysis. The 
two classes of distal IREs predominantly mapped to the enhancer 
chromatin state (Extended Data Fig. 3d) and showed clear differ-
ences in sequence composition. Newly induced enhancers were 
enriched for the binding motifs of inflammatory response tran-
scription factors including IFN-sensitive response element (ISRE), 
signal transducer and activator of transcription (STAT) and nuclear 
factor kappa-light-chain-enhancer of activated B cells (NF-κB) 
(Extended Data Fig. 3e). Instead, primed enhancers were enriched 
for binding motifs of inflammatory response transcription factors 
(ISRE, STAT) and, unexpectedly, islet-specific transcription factors 
(HNF1A/B, NEUROD1, PDX1, MAFB, NKX6.1; Extended Data 
Fig. 3f). Importantly, we found that in primed enhancers, inflam-
matory response and islet-specific transcription factor binding 
motifs mapped to the same genomic regions, suggesting cobinding 
and possibly cooperation of the two classes of transcription factors 
(Extended Data Fig. 3g,h).

Sequence composition bias per se does not imply transcription 
factor occupancy. Thus, we took advantage of published ChIP-
seq datasets of islet-specific transcription factors (MAFB, PDX1, 
FOXA2, NKX6.1 and NKX2.2) mapped in unstimulated human 
pancreatic islets9 to measure transcription factor occupancy in 
primed and neo-enhancers before the proinflammatory stimu-
lus. As expected from the sequence composition analysis, primed 
enhancers (unlike neo-enhancers) are bound by tissue-specific tran-
scription factors even before their activation (Fig. 2d and Extended 
Data Fig. 3i). Transcription factor occupancy can also be indirectly 
assessed by ATAC-seq, which assays the protection of the bound 
sequence to transposase cleavage (footprint). Footprint analysis is 
effective for transcription factors with a long residence time10, such 
as the IFN regulatory factor (IRF) and STAT transcription factor 
families. Our analyses revealed the emergence of footprint marks 
on proinflammatory treatment in correspondence to ISRE motifs 
in both primed and neo-enhancers (Fig. 2e), indicating cytokine-
induced transcription factor occupancy of IREs.

Gene regulation is orchestrated by different epigenetic mecha-
nisms. DNA methylation is a relatively stable epigenetic mark 
contributing to maintenance of cellular identity11,12. Moreover, high-
resolution DNA methylation maps, obtained from multiple tissues, 
suggested that the vast majority of tissue-specific, differentially 
methylated regions are located at distal, mostly noncoding regula-
tory sites13. Consequently, characterization of the DNA methylome 
in the context of relevant stimuli is important for understanding the 
functional mechanisms of tissue-specific responses in human dis-
ease14. Thus, we explored if cytokine-induced chromatin remodel-
ing is associated with changes in DNA methylation. We quantified 
DNA methylation changes by performing dense methylation arrays 
in EC cells exposed or unexposed to IFN-γ and IL-1β. The Infinium 
MethylationEPIC array was designed to interrogate with high preci-
sion and coverage >850,000 CpG sites (approximately 3% of all sites 
in the genome) selected primarily because of their location close to 
gene promoters and CpG island regions. By focusing on the 1,230 
IRE enhancers harboring one or more CpG sites interrogated by the 
array, we observed that primed enhancers overlap lowly methylated 
CpGs (median β = 0.12 ± 0.08), which did not vary significantly on 
cytokine exposure. Such observation is in sharp contrast with neo-
enhancers, which were highly methylated under control conditions 
(median β = 0.77 ± 0.10), but underwent a significant loss of DNA 
methylation (two-sided Wilcoxon test, P = 4.13 × 10−4) on treatment 
(Fig. 2f). While we did not observe cytokine-induced methylation, 
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we found that approximately 70% of significantly demethylated 
probes (FDR-adjusted P ≤ 0.05; β-value differences between cyto-
kine-exposed and untreated cells (βCyt − βCtrl) < −0.20) mapping to 
IREs were located at neo-enhancers (Extended Data Fig. 3j,k).

These results suggest that neo-enhancers are enriched for methyl-
ated CpGs that undergo preferential demethylation on cytokine treat-
ment, whereas primed enhancers are enriched for unmethylated CpGs 
that do not change their methylation status on exposure to cytokines.
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Fig. 2 | The β-cell response to proinflammatory cytokines unveils neo and primed IREs. a, Classification of ATAC-seq open chromatin sites on exposure 
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Taken together these analyses lead to a model, where proinflam-
matory cytokines elicit a regulatory response in β cells character-
ized by: (1) new induction of distal regulatory elements coupled 
with reduction of DNA methylation and binding of inflammatory 
response transcription factors; and (2) activation of regulatory ele-
ments prebound by islet-specific transcription factors and induced 
by inflammatory response transcription factors (Fig. 2g).

Collectively, these results allow the reconstruction of cis-regu-
latory networks activated in human pancreatic β cells on exposure 
to the proinflammatory cytokines IFN-γ and IL-1β (Extended Data 
Fig. 4a–c and Supplementary Table 1).

Changes in islet 3D chromatin structure. Regulatory regions can 
exert control over genes at megabase distances through the forma-
tion of DNA loops. These loops are often confined within struc-
tures known as topologically associating domains15–17. Topologically 
associating domains are largely conserved on evolution, are invari-
ant in different cell types and have their boundaries defined by the 
regulatory scope of tissue-specific enhancers18,19. Our knowledge 
regarding the general characteristics and mechanisms of loops is 
improving20–23, but much less is known regarding the mechanisms 
and functional significance of dynamic looping events during bio-
logical processes.

We took advantage of promoter capture Hi-C performed in 
human pancreatic islets24 to explore the long-range interactions 
between gene promoters and cytokine-induced and invariant distant 
regulatory elements. Interestingly, we observed that the interaction 
confidence scores captured between IRE enhancers and gene pro-
moters in untreated islets were significantly reduced compared with 
distal stable regulatory element (SRE) (P = 1.8 × 10−11; Extended 
Data Fig. 5a). Since this finding pointed to potential dynamic prop-
erties of the interaction maps, we next sought to investigate if cyto-
kine-induced regulatory changes are linked to modification of 3D 
chromatin structure and if induction of β-cell cytokine-responsive 
regulatory elements is coupled with the new formation of DNA 
looping interactions.

Hi-C profiles are limited in sequencing coverage and library 
complexity, resulting in maps of reduced resolution relative to reg-
ulatory maps of functional elements. On the other hand, circular 
chromosome conformation capture (4C) approaches are difficult 
to interpret quantitatively mainly due to potential amplification 
bias. Thus, we applied targeted chromosome capture with unique 
molecular identifiers (UMI-4C), a recently developed method25, to 
quantitatively measure interaction intensities in human islets before 
and after exposure to proinflammatory cytokines. We centered 
the conformation capture viewpoint at the promoter of 13 genes 
(TNFSF10, GBP1 and CIITA, among others) whose expression was 
strongly induced by cytokine exposure.

UMI-4C showed marked changes in the 3D chromatin structure 
at the analyzed loci. Promoters of the induced genes gained chroma-
tin interactions, with distal genomic regions reflecting the forma-
tion of new DNA looping events (Fig. 3a,b and Extended Data Fig. 
5b–d). Importantly, such new contacts were preferentially engaged 
with newly mapped human islet cytokine-responsive IREs (Fig. 3c).

These results demonstrate that cytokine exposure induces 
changes in human islet 3D chromatin conformation including the 
formation of new enhancer–promoter interactions. Such changes 
allow the newly activated distal IREs to contact their target gene 
promoters.

Islet cytokine enhancers are implicated in T1D genetic suscep-
tibility. GWAS have identified approximately 60 chromosome 
regions associated with T1D26, with many of the association signals 
having been assigned to candidate genes with immunological func-
tions. Consistent with this notion, several studies reported a pri-
mary enrichment of T1D risk variants in T- and B-cell regulatory 

elements4,5. Furthermore, there is a substantial lack of statistically 
significant overlap of T1D-associated variants in islet enhancers, 
while such regulatory elements are instead enriched for GWAS sig-
nals for type 2 diabetes (T2D) and fasting glucose9,27. Nonetheless, 
the molecular mechanisms linking T1D association signals to cel-
lular functions are poorly described for most of the regions of asso-
ciation identified.

We hypothesized that a subset of T1D genetic signals may reflect 
an altered capacity of β cells to react to an inflammatory environ-
ment. Thus, we sought to explore to what extent genetic signals 
underlying T1D susceptibility act through pancreatic islet regula-
tory response to proinflammatory cytokines.

Causal cis variants are expected to be found in sequences that act 
as regulatory regions in state-specific and disease-relevant tissues. 
Thus, we examined nonshared loci with genome-wide significant 
association to T2D and T1D in European populations and con-
sidered all variants in high linkage disequilibrium (1000 Genomes 
Project, phase 3 European population (EUR), R2 > 0.8) with a lead 
SNP reported in the National Human Genome Research Institute-
European Bioinformatics Institute (NHGRI-EBI) GWAS catalog26. 
In line with previous observations4,9, we found that T2D but not 
T1D risk variants overlap human islet noncytokine-responsive reg-
ulatory elements (that is, SREs) more than expected by chance (T2D 
SNPs in SREs P < 2 × 10−16, z = 5.47). In contrast, we found that 
human islet IREs are enriched for T1D but not T2D risk variants 
(T1D SNPs in IREs P = 3 × 10−6, z = 4.61) (Fig. 4a). This result was 
reproduced when using regulatory elements detected in EC cells 
(Extended Data Fig. 6a). Such findings revealed 9 T1D-associated 
regions (13% of the total) containing at least 1 islet cytokine-
induced regulatory element directly overlapping a T1D-associated 
variant (Supplementary Table 3 and Extended Data Fig. 6b–f).

We noted that the two T1D lead SNPs at the 1q24.3 and 16q13.13 
loci (rs78037977 (refs. 28,29) and rs193778 (ref. 4), respectively) were 
directly overlapping IREs in the islets. We used GWAS genotyping 
data from a cohort of 14,575 individuals (5,909 T1D cases and 8,721 
controls (Ctrls); see Methods) to confirm their association with T1D. 
Both variants were included in the 99% credible set of their respec-
tive locus and displayed strong association P values (rs78037977, 
P = 6.94 × 10−10; rs193778, P = 1.33 × 10−7; see Supplementary Table 
4 for the posterior probability of association and variant ranking in 
the credible set), indicating that they could potentially be causal.

At the 1q24.3 locus, rs78037977 (NC_000001.10:g.172715702
A>G) overlaps an islet cytokine-induced chromatin site (Fig. 4b), 
which is prebound by islet-specific transcription factors and is 
a predicted enhancer in other cell types (Extended Data Fig. 6g). 
We created allele-specific luciferase reporter constructs and mea-
sured enhancer activity in the EC cell line before and after cyto-
kine exposure. The sequence exerts enhancer activity exclusively 
after cytokine exposure, which is disrupted by the rs78037977 
T1D-associated G allele (one-way analysis of variance (ANOVA), 
F = 26, P = 4.34 × 10−5; Fig. 4c and Extended Data Fig. 6h). This is 
consistent with a causal role of the variant at this locus. To identify 
the gene target of this T1D-susceptible enhancer, we reconstructed 
the 3D chromatin structure using chromatin capture experiments. 
UMI-4C in human islets identified a cytokine-induced interaction 
of the enhancer with TNFSF18, a gene activated in islets on cytokine 
exposure (Fig. 4d,e). TNFSF18 encodes a cytokine, glucocorticoid-
induced tumor necrosis factor receptor-related protein (GITR; also 
known as TNFRSF18), which modulates the inflammatory reac-
tion and regulation of autoimmune responses30. Interestingly, we 
noted that cytokine exposure results in upregulation of TNFSF18 in 
human islets but not in the EC β-cell line, suggesting differences in 
gene regulatory dynamics in primary tissue or the activation of an 
islet cell subpopulation.

At the 16q13.13 locus, rs193778 (NC_000016.9:g.11351211
A>G) maps to a phylogenetically conserved, cytokine-responsive 
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regulatory element (Fig. 4f). This sequence displays enhancer 
activity in both treated and untreated β cells. However, exclusively 
in cytokine-exposed β cells, the T1D-associated G allele exerts 
significantly higher enhancer activity than the protective variant 
(one-way ANOVA, F = 12.34, P = 1.23 × 10−3; Fig. 4g and Extended 
Data Fig. 6i). The locus includes several upregulated genes (SOCS1, 
DEXI, CIITA, RMI2) that could represent potential targets of this 
IRE. Recent research points to DEXI as a T1D candidate gene in 
immune cells and β cells31,32. By performing UMI-4C experiments in 
human islets, we observed a strong chromatin contact between the 
promoter of DEXI and the regulatory element bearing the rs193778 
T1D-associated variant (Fig. 4h). Such data points to DEXI as a 
potential causal gene in pancreatic islets.

Altogether, these results illustrate how unraveling cytokine-
induced chromatin dynamics in human islets can guide the iden-
tification of cis-regulatory variants that are strong candidates in 
driving T1D-association signals.

Discussion
Our work illustrates the human pancreatic β-cell chromatin 
dynamics in response to an external stimulus that may be relevant 
in the context of T1D. We show that exposure to proinflamma-
tory cytokines causes profound remodeling of the β-cell regulatory 
landscape coupled with changes in gene expression and protein pro-
duction. The degree of remodeling of the regulatory network was 
comparable to that previously shown for macrophages or mouse 
dendritic cells exposed to similar stimuli7. We unveil the activation 
of approximately 3,600 cytokine-responsive distal cis-regulatory  

elements and reveal a lack of homogeneity in their molecular 
mechanism of activation. We observe that the induction of a subset 
of regulatory regions (neo-IREs) require transcription factor bind-
ing and chromatin opening, while other chromatin sites are primed 
to their activation being prebound by islet-specific transcription 
factors. Our observations suggest a model where binding of tissue-
specific transcription factors may facilitate chromatin accessibility 
at a subset of chromatin sites that can then be promptly activated 
by the induction of inflammatory response transcription factors. 
Such a model is supported by very recent findings33 and it is con-
sistent with observations in murine macrophages7,34 and dendritic 
cells35; however, thus far, it has not been demonstrated in a highly 
differentiated and nonimmune-related tissue, such as pancreatic 
islets. Even though our model suggests that exposure to proinflam-
matory cytokines causes predominantly induction of gene tran-
scription rather than transcript downregulation, we cannot exclude 
that a more prolonged stimulus could induce loss of critical β-cell 
processes resulting from the reduction of β-cell cis-regulatory net-
work activity.

Importantly, we show that such regulatory changes are coupled 
with 3D chromatin remodeling, allowing the newly activated regu-
latory elements to contact their target genes. Several reports have 
described the properties of 3D chromatin dynamics in the cell 
developmental context36,37, on loss of cell fate38,39, senescence40,41 or 
in response to hormonal exposure42. Our observations indicate that 
the capacity of enhancer loop formation is maintained in a highly 
differentiated tissue such as the islets and it is coupled with tran-
scriptional regulatory changes in response to an external stimulus.
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The model used in our study to explore chromatin dynamics 
is of particular interest because it mimics the inflammatory envi-
ronment that pancreatic islets may face in the early stages of T1D. 
While several T1D candidate genes regulating key steps related to 
danger signal recognition and innate immunity are expressed in 
human islets43, T1D-associated variants are enriched for immune 
cell types but not in stable pancreatic islets regulatory elements4. 
Such apparent contradiction may be reconciled by our findings 
showing that human islet cytokine-responsive regulatory elements 
are enriched for T1D risk variants. Our data, supported by recent 
findings revealing regulatory variants that affect enhancer activa-
tion in the immune response33,44, opens the avenue to identify T1D 
molecular mechanisms acting at the pancreatic islet cell level.

Although we cannot exclude that functional variants disrupting 
the β-cell regulatory mechanisms may at the same time affect the reg-
ulatory potential of immune-related cell types, the availability of stim-
ulus-responsive cis-regulatory maps in pancreatic islets will facilitate 
hypothesis-driven experiments to uncover how common and lower-
frequency genetic variants impact islet cells in T1D. In this study, we 

researched the human islet responses to a specific proinflammatory 
stimulus. Future work studying additional immune-mediated stresses 
potentially affecting β cells at different stages of the disease may 
uncover other association signals acting at the islet cell level.

More generally, our findings could apply by extension to other 
diseases where primed enhancers may facilitate cell type-specific 
responses to ubiquitous signals resulting in tissue-specific genetic 
susceptibility in autoimmune diseases.
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Methods
Human islets and EC cells. Human islets from 14 multiorgan donors without a 
history of glucose intolerance were isolated in compliance with ethical regulations 
(Supplementary Note 1) and according to established isolation procedures45,46 
(Supplementary Note 2 and Supplementary Table 5). The human insulin-producing 
EC cells where kindly provided by R. Scharfmann6 and cultured in DMEM 
medium (Supplementary Note 3).

Human islets and EC cells where either exposed or unexposed to a cocktail of 
proinflammatory cytokines IFN-γ and IL-1β for 48 h. The cytokine concentrations 
used were those described in previous dose–response experiments47–49 
(Supplementary Note 2). The glucose stimulation index was tested on human islet 
preparations and EC cell samples to confirm functional competence of the samples 
(Supplementary Note 4 and Extended Data Fig. 7).

ChIP-seq and ATAC-seq. ATAC-seq library preparations were carried out as 
described previously50 with minor modifications51,52 (Supplementary Note 5). 
ChIP-seq was carried out using tagmentation (ChIPmentation) as described 
previously53 (Supplementary Note 6).

ATAC-seq and ChIP-seq libraries were sequenced on a HiSeq 2500 system 
(Illumina). Reads were aligned to the hg19 reference genome using Bowtie 2 
v.2.3.4.1 (ref. 54) using default parameters. After alignment, reads mapping to 
Encyclopedia of DNA Elements blacklist regions55, noncanonical chromosomes 
or mitochondrial DNA were discarded. Duplicates were removed using samtools 
markdup v.1.8 (ref. 56). See Supplementary Table 6 for the number of mapped reads 
per experiment and Extended Data Fig. 8 for measures of ATAC-seq quality.

Peaks were called with MACS2 callpeak v.2.1 (ref. 57) with the parameters ‘-q 
0.05 -nomodel -shift -100 -extsize 200’ for ATAC-seq and ‘-broad -broad-cutoff 0.1 
--nomodel’ for H3K27ac ChIP-seq. A more detailed description of bioinformatics 
processing can be found in Supplementary Note 7.

RNA-seq. Total RNA was isolated from EC cells and human islets8 using the 
RNeasy Mini Kit (QIAGEN), which retrieves RNA molecules longer than 200 
nucleotides, as described in detail previously58. RNA integrity number values were 
evaluated using the Bioanalyzer 2100 (Agilent Technologies). All the samples had 
RNA integrity number values >8 (Supplementary Note 8).

RNA-seq libraries were sequenced on a HiSeq 2000 platform (Illumina) to 
produce 100 base pair (bp)-long paired-end reads with an average of 180 million 
reads per replicate (EC cells, n = 5). Reads were aligned using TopHat v.2.0.13  
(ref. 59) to the GChr37 genome with default parameters. Then reads were assigned 
to GENCODE release 18 gene annotation60 using htseq-count v.0.6.1p1 (ref. 61) 
with default parameters. The RNA-seq of five human islet preparations8 was used 
for comparison and processed in an identical way.

Differential analysis of ATAC-seq, ChIP-seq and RNA-seq. For both ATAC-seq 
and ChIP-seq, aligned reads from all replicates were merged into a single BAM file 
to identify a comprehensive set of peaks. Next, we used the comprehensive peak 
set to compute read counts separately for each replicate and condition. In the case 
of the RNA-seq data, the output of htseq-count was used as the input matrix for 
downstream analysis. The generated matrices were normalized and differential 
analysis was performed using DESeq2 v.1.24.0 (ref. 62) using a paired sample design 
(Supplementary Note 9). Thresholds for significance were set at an FDR-adjusted 
P < 0.05 and an absolute log2 fold change > 1. All regions/genes that did not reach 
significance or did not pass the log2 fold change cutoff were classified as stable/
equally regulated.

Proteomics. For the proteomics analysis, 1.5 million EC cells treated or not treated 
with cytokines (IL-1β + IFN-γ) were processed using the metabolite, protein and 
lipid extraction approach63 (Supplementary Note 10).

Collected data were processed using Decon2LS_V2 v.2.3.1.4 (ref. 64) and 
DtaRefinery v.1.2 (ref. 65), both using default parameters, to recalibrate the 
runs and generate peak lists. Peptide identification was done using MS-GF+ 
v.2017.08.23 (ref. 66) by searching peak lists against islet protein sequences deduced 
from a transcriptomics experiment47 and supplemented with keratin sequences 
(32,780 total protein sequences) (Supplementary Note 10).

Extracted reporter ion intensities (Supplementary Note 10) were then 
converted into log2 and normalized by standard median centering. Proteins 
were quantified using a Bayesian proteoform discovery methodology (Bayesian 
proteoform quantification) in combination with standard reference-based median 
quantification67 and were considered significant at a cutoff of P ≤ 0.05 based on a 
paired t-test.

Protein–protein interaction network analysis was performed with GeNets68 
using Metanetworks v.1.0, which integrates protein–protein interactions from 
InWeb v.3 (ref. 69) and ConsensusPathDB v.32 (ref. 70). Default parameters  
were applied and Molecular Signatures Database-enriched v.6.1 (ref. 71)  
pathways were overlaid.

Defining classes of IREs. To characterize the dynamics of chromatin accessibility 
on exposure of human islets and EC cells to proinflammatory cytokines, we 
processed the results obtained from the DESeq2 differential analysis and computed 

the overlap between ATAC-seq peaks and H3K27ac-enriched sites, allowing a 
200 bp gap. Regions annotated as stable for both ATAC-seq and H3K27ac assays 
were classified as SREs. Regions classified as either stable or gained in ATAC-seq 
differential analysis and as gained in H3K27ac were classified as IREs.

IREs were classified in two groups: opening IREs (n = 2,436), corresponding to 
regions annotated as gained for both ATAC-seq and H3K27ac; and primed IREs 
(n = 1,362) for regions annotated as stable for ATAC-seq and gained for H3K27ac. 
Since opening IREs include a gradient of cytokine-induced chromatin accessibility 
changes, we next selected only those opening regions that were completely closed 
before cytokine exposure. For this purpose, we considered newly open chromatin 
regions as those opening ATAC-seq peaks that were not called in the control 
samples using a relaxed threshold (P ≤ 0.05). Such analysis allowed us to identify a 
subset of 1,716 opening regions that we named neo-IREs. A similar approach was 
used to identify macrophage latent enhancers7.

See Supplementary Note 11 for the sequence conservation analysis performed 
at the different classes of IREs.

Assigning regulatory elements to target genes. To annotate regulatory elements 
as distal or proximal, we assigned each regulatory element to the nearest TSS of 
a coding gene (using GENCODE release 18 annotation60). Those regions lying 
within 2 kilobases (kb) from the nearest TSS were annotated as promoters while the 
rest were considered as distal regulatory elements.

To test the association between different classes of open chromatin and changes 
in gene expression and protein abundance (Fig. 1d,e and Extended Data Figs. 2e 
and 3a) in an unbiased manner, we assigned ATAC-seq sites to genes closer than 
15 kb from their TSS. To analyze the additive effect of IREs on gene expression 
changes, we associated to a gene all IREs within 40 kb of their TSS (Extended Data 
Fig. 2f).

Finally, to detect all possible IRE gene targets, we assigned to each IRE all 
upregulated genes whose TSS was closer than 40 kb. When an upregulated gene 
could not be found in <40 kb, the IRE was assigned to the closest, but <1 Mb 
far, induced gene (Extended Data Fig. 4a and Supplementary Tables 1 and 2; see 
Supplementary Note 12).

Sequence composition and transcription factor analysis. De novo motif analysis 
was performed using HOMER v.4.8.2 (ref. 72) findMotifGenome.pl tool with the 
parameter ‘-size given -bits –mask’. Only enriched sequences present in >1.5% 
of targets were retained. Selection of best matches was performed as follows: all 
matches with scores >0.80 were included in the table; for those hits without any 
match >0.80, the top 3 hits were selected and their score was included in the table 
(Extended Data Figs. 1g and 3e,f).

To assay motif colocalization, we used all motif instances identified in the 
de novo analysis in primed enhancers. First we used the findMotifGenome.pl 
tool from HOMER to map all these motif instances in primed enhancers and 
SRE enhancers (that is, excluding all sites <2 kb from a TSS). Next, the motif 
colocalization was calculated by counting motif pairs found in each ATAC-
seq peak. Significance was determined by Fisher’s exact test comparing the 
colocalization of motif pairs in distal IREs versus distal SREs. Only significant 
pairs (Fisher’s exact test, FDR-adjusted P < 0.001) were retained (Extended Data 
Fig. 3g,h).

To evaluate islet-specific transcription factor occupancy, we used ChIP-seq 
BAM files for PDX1, NKX2.2, FOXA2, NKX6.1 and MAFB9. We computed the 
read coverage in the regions of interest over 10 bp bins. Reads were quantile-
normalized, the mean counts in each bin for each transcription factor were 
calculated and the mean for all transcription factors was plotted (Fig. 2d).

To identify footprints from the ATAC-seq data, we generated tag directories 
with all ATAC-seq replicates in each condition using HOMER makeTagDirectory. 
Neo and primed enhancers were centered on the ISRE motif matrix annotated with 
annotatePeaks.pl with the option ‘-center motif1.motif –size given’ and tag means 
for the 5′ and 3′ read ends were obtained using annotatePeaks.pl with the option 
‘-size -100,100 –hist 1 –d tagsDir’. The resulting 5′ ends were plotted using ggplot2 
v.3.2.0 (ref. 73) (Fig. 2e).

To create a nonredundant dataset of motifs for the gene regulatory network 
analysis (Extended Data Fig. 4a), motifs from primed and opening enhancers were 
reduced to a nonredundant set with the compareMotifs.pl script from HOMER 
using a similarity score of 0.7 as the threshold for merging similar motifs. The 
motifs were then mapped to primed and opening enhancers using annotatePeaks.pl.

Infinium MethylationEPIC array. DNA from EC cells exposed or unexposed 
to IL-1β and IFN-γ for 48 h, as described earlier (5 replicates per condition), was 
extracted using QIAamp DNA Mini Kit (QIAGEN); 1 µg DNA aliquots (n = 10) 
were processed for 850 K Infinium MethylationEPIC array (Illumina) as described 
previously74.

The resulting array signals were processed and analyzed with the RnBeads R 
package v.3.2.0 (ref. 75). The method used by RnBeads to assess differences between 
groups consists of fitting a hierarchal linear model (the empirical Bayesian method 
from the limma package v.3.40.0 (ref. 76)) using M values (log of β values) as 
metrics to measure methylation levels77. All P values were corrected for multiple 
testing using the Benjamini–Hochberg method for controlling the FDR. CpGs 
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were considered as differentially methylated when FDR-adjusted P < 0.05 and 
the absolute difference in methylation β values between cytokine and control 
samples was >0.2 (20% change in methylation). Information on the differentially 
methylated CpGs can be found in Supplementary Table 7.

UMI-4C. UMI-4C was performed as described previously25 with minor 
modifications (see Supplementary Note 13). To increase molecular complexity, 
each library was obtained by pooling 5–10 PCRs per viewpoint. The PCR primers 
used in UMI-4C are listed in Supplementary Table 8. Each library was sequenced 
to a depth >1 million 75-bp-long paired-end reads using either the NextSeq 550 or 
HiSeq 2500 platforms.

Paired-end reads were demultiplexed according to the viewpoint 
sequence using fastq-multx from ea-utils v.1.30 (ref. 78) and analyzed with the 
umi4cPackage v.0.0.0.9000 (ref. 25). 4C tracks were created by selecting viewpoint-
specific reads, aligning them to the genome and extracting the number of 
UMIs using the p4cCreate4CseqTrack function (see quality control statistics in 
Supplementary Table 9). Cytokine-treated profiles were then scaled to the control 
profile using the umi4cPackage function p4cSmoothedTrendComp. Profiles 
were also smoothened based on the total number of UMIs present in a 2 Mb 
region centered on the viewpoint and excluding the 3 kb around it. The following 
formula was used to calculate the minimum UMIs needed for smoothing. If the 
fragment did not reach this minimum, it was merged with successive fragments 
until a minimum was reached:

MinimumUMIs ¼
P

UMIsregion
2;000

´ 50

To detect differential chromatin contacts we focused on a 2 Mb region centered 
on the viewpoint, but excluding 1.5 kb on each side of the viewpoint. We then 
partitioned the region into windows of width proportional to the mean restriction 
fragment length in the region (Meanfragment):

Widthwindow ¼ Meanfragment ´ 20

Differential contact analysis was performed for each of these windows using 
a chi-squared test, comparing UMIs in such windows with the total number of 
UMIs in the 2 Mb region. Windows with a chi-squared P < 0.05 are highlighted 
in Fig. 3a,b and Extended Data Fig. 5b–d with small black diamonds. To quantify 
the chromatin contact changes, we counted the number of cytokine-treated and 
untreated UMIs for each window and computed their odds ratio (OR) based on the 
total UMI counts in the region, following the formula:

ORwindow ¼ Ctrlregion ´Cytwindow
Ctrlwindow ´Cytregion

where Ctrl and Cyt represent the number of UMIs in unexposed and cytokine-
exposed conditions.

Variant set enrichment (VSE) analyses. We used the VSE R package v.0.99 (ref. 79) 
to assess the enrichment of T1D and T2D risk variant for IRE and SRE regulatory 
annotations. We first selected from the NHGRI-EBI GWAS catalog26 all leading 
SNPs with disease trait matching either ‘type 1 diabetes’ or ‘type 2 diabetes’ (24 
April 2019). Next, we extended our collection of associated variants to all those 
in strong linkage disequilibrium (R2 ≥ 0.8, EUR) with the lead SNP (source of 
linkage disequilibrium information, 1000 Genomes Project phase 3 (ref. 80)). These 
SNPs and their proxies were used to generate the associated variant set (AVS)79, 
resulting in 83 disjointed regions for T1D and 389 for T2D, after removing shared 
loci between T1D and T2D. A null distribution or matched random variant set, 
matched in size and structure to the original AVS, was generated from the 1000 
Genomes Project phase 3 by permutating the AVS 500 times. The number of 
independent SNPs from the AVS overlapping the regulatory annotations was 
computed and compared with the intersections obtained with the matched 
random variant set. The enrichment score was defined as the number of s.d. that 
the overlapping tally deviates from the null overlapping tally median. The exact 
P value was then calculated by fitting a density function to the null distribution 
derived from the matched random variant set. This P value was finally corrected 
for multiple testing using the Bonferroni method. Enrichments or depletions with 
a Bonferroni-adjusted P < 0.05 were considered statistically significant (Fig. 4a and 
Extended Data Fig. 6a).

T1D-associated regions were generated by selecting all SNPs in strong linkage 
disequilibrium (R2 ≥ 0.8, EUR) with the T1D leading SNPs. We defined the risk 
loci boundaries using the most upstream and downstream SNPs. Next, we merged 
the overlapping loci to obtain a total of 71 T1D risk regions. All T1D-associated 
regions containing IREs and T1D risk variants directly overlapping human islet 
cytokine-induced regulatory elements are shown in Supplementary Table 3. For 
this analysis, to extract all possible cytokine-induced regulatory elements located at 
the T1D risk loci, we used a less stringent set of human islet IREs by lowering the 
H3K27ac log2 fold change threshold from 1 to 0.8.

For details regarding the GWAS association analysis, see Supplementary Note 14.

Luciferase reporter assays. For episomal reporter assays in the EC cell line, 
selected human cytokine-induced regulatory elements regions were first amplified 
from genomic DNA using primers (Supplementary Table 10) containing the XhoI/
HindIII restriction sites. The amplicons were then cloned into the pGL4.23[luc2/
minP] luciferase reporter vector (Promega Corporation) as described previously81. 
Briefly, the amplicon and the vector were simultaneously digested. Next, the vector 
was dephosphorylated with FastAP (Thermo Fisher Scientific). The DNA was 
then purified and ligated with a T4 DNA Ligase (Promega Corporation). Next, 
the generated reporter vectors were transformed into Escherichia coli (DH5α) and 
purified with the NucleoSpin Plasmid (catalog no. 740588.250; Macherey-Nagel).

Site-directed mutagenesis was used to introduce single-nucleotide variants into 
the generated construct. The variants were generated by PCR using the primers 
shown in Supplementary Table 10. The parental supercoiled double-stranded DNA 
was digested with DpnI (catalog no. R0176S; New England Biolabs) 1 h at 37 °C 
and the constructs were transformed in competent E. coli cells (DH5α) by thermal 
shock. Finally, the introduced variants were checked using Sanger sequencing.

EC cells were transfected in 24-well plates at a density of 300,000 cells per well, 
with 200 ng of reporter vectors or empty vectors plus 20 ng of phRL-CMV Renilla 
luciferase to control for transfection efficiency.

Transfections were performed with Lipofectamine 2000 (Thermo Fisher 
Scientific) for 8 h, according to the manufacturer’s instructions. On transfection, 
the EC medium was supplemented with 2% FCS82 and exposed or unexposed to 
the cytokines for 48 h. After 48 h, cells were assayed using the Dual Luciferase 
Assay (Promega Corporation), according to the manufacturer’s instructions. 
The luciferase units were measured with the VICTOR Multilabel Plate Reader 
(PerkinElmer). Firefly luciferase activity was normalized to Renilla luciferase 
activity and then divided by the values obtained for the empty pGL4.23. The assays 
were performed in at least three independent experiments.

Statistical differences were calculated using a one-way ANOVA. P values were 
then Bonferroni-corrected.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Datasets for the IREs are available for download and visualization at the Islet 
Regulome Browser83 (www.isletregulome.com).
Raw sequencing reads for the different high-throughput assays can be accessed 
at the Gene Expression Omnibus with the following identifiers: GSE123404 
(ATAC-seq); GSE133135 (H3K27ac data); GSE137136 (RNA-seq); and GSE136865 
(UMI-4C). Raw proteomics data can be accessed at the ProteomeXchange with the 
identifier PXD011902.

Code availability
The code and scripts used in this study are available from the corresponding author 
upon reasonable request.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Chromatin characterization of human pancreatic β cells exposed to pro-inflammatory cytokines. a, Pearson correlation values 
between replicates in different assays and conditions (see Supplementary Note 2). b, Volcano plots of ATAC-seq (left) and H3K27ac ChIP-seq (right) 
changes obtained after exposure of EndoC-βH1 to IFN-γ and IL-1β; green and red dots correspond to sites with absolute log2 fold change > 1 and FDR 
adjusted P < 0.05 as calculated by fitting a negative binomial model in DESeq2. Chromatin changes are classified as ‘gained’ and ‘lost’ chromatin sites 
whereas non-significant changes are defined as ‘stable’. c, Chromatin accessibility and H3K27ac enrichment changes observed in EndoC-βH1 are largely 
replicated in human pancreatic islets as illustrated by the distribution of log2 fold change at regions as classified in b in EndoC-βH1. Dotted lines indicate 
log2 fold change thresholds (absolute log2 fold change > 1). Box plot limits show upper and lower quartiles, whiskers extend to 1.5 times the interquartile 
range and the notch represents the confidence interval around the median. d, Hierarchical clustering using normalized ATAC-seq and H3K27ac read 
counts at EndoC-βH1 IREs shows that samples cluster according to treatment, suggesting that the differences caused by the proinflammatory cytokines 
are greater than those derived by the sample heterogeneity. HI = Human pancreatic islets, EndoC = EndoC-βH1 e, Distribution of distances to nearest 
TSS for the different types of regulatory elements, showing that IREs, compared with stable regulatory elements (SREs), are preferentially located distally 
to TSS. f, Mean sequence conservation score of IREs and a randomized set of IREs in placental mammals. Peaks were extended from the center 1 kb to 
each direction and mean score was calculated in 50 bp windows. g, Sequence composition analysis of IREs (n = 3,009) illustrating the top identified 
de novo motifs. Colors for matched genes correspond to RNA-seq (name) or protein (underlined) status (red = down-regulated, blue = equal-regulated, 
green = up-regulated, black/no line = not expressed/detected).
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Extended Data Fig. 2 | Exposure to pro-inflammatory cytokines drives changes in the transcriptome and proteome of pancreatic β cells. a, Volcano 
plot of RNA-seq genes, showing up-regulated genes (green) and down-regulated genes (red) upon exposure of EndoC-βH1 to cytokines. Vertical lines 
indicate the log2 fold change threshold (absolute log2 fold change > 1) and horizontal line indicates the FDR adjusted P cutoff for significance (FDR adjusted 
P < 0.05) calculated by fitting a negative binomial model in DESeq2. b, Distribution of RNA-seq counts in human islet samples in the genes previously 
classified as up, down or equal-regulated in EndoC-βH1 cells. Boxplot limits show upper and lower quartiles, whiskers extend to 1.5 times the interquartile 
range and the notch represents the confidence interval around the median. c, Volcano plot for multiplex proteomics, showing in green the up-regulated 
proteins and in red the down-regulated, which have a Q-value < 0.1 and absolute log2 fold change > 0.58. Vertical lines indicate the log2 fold change 
thresholds. d, Protein-protein Interaction (PPI) network generated from up-regulated proteins after cytokine exposure. Node color indicates belonging to 
same interacting community and background corresponds to specific pathway enrichment. e, Proportion of up, equal or down-regulated proteins encoded 
by genes located <15 kb from IREs or SREs. *** Chi-squared test P < 0.001. f, An additive effect on gene up-regulation was observed for multiple IREs 
located at <40 kb of a gene. Box plot limits show upper and lower quartiles, whiskers extend to 1.5 times the interquartile range and the notch represents 
the confidence interval around the median. ANOVA P < 2.2 × 10−16. g, View of the LY6E locus, whose expression is induced after cytokine exposure and is 
coupled with chromatin changes in the vicinity.
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Extended Data Fig. 3 | Characterization of β-cell IREs. a, Genes associated to different classes of IREs (classified as in Fig. 2a) show cytokine-induced 
expression in EndoC-βH1. CYT = cytokine exposed, CTRL = control. Boxplot limits show upper and lower quartiles, whiskers extend to 1.5 times the 
interquartile range and notch represents the median confidence interval. ***Wilcoxon test P < 0.001. b, Sequence conservation score of IREs and a 
corresponding randomized set used as control. c, Distribution of distances to nearest TSS of the different classes of open chromatin sites. Line indicates 
the threshold used to classify them as ‘promoters’. d, Number of IREs overlapping regions annotated as ‘Strong’ or ‘Weak’ enhancers by ENCODE 
ChromHMM. *Chi-squared P < 2 × 10−16. e, f, Top hits for de novo motif analysis in opening (e) and primed enhancers (f). Colors for matched genes 
correspond to RNA-seq (name) or protein (underlined) status (red = down-regulated, blue = equal-regulated, green = up-regulated, black/no-line = not-
expressed/detected). g, Diagram showing the percentage of colocalization between the TF binding sites identified by de novo motif analysis in SRE and 
primed enhancers (that is excluding sites < 2Kb from a TSS). Label size indicates number of regions containing the TF binding sites and line width/
intensity percentage of regions in which two motifs colocalize. h, Odds-ratio for finding a motif pair in the same enhancer in primed vs. SRE. Only 
significant pairs (FDR-adjusted Fisher’s Exact test P < 0.001) are shown. Immune and islet-specific TF motifs colocalize more often in primed compared 
to SRE chromatin sites. i, Percentage of overlap between EndoC-βH1 different classes of open chromatin and islet-specific TFs obtained by ChIP-seq in 
untreated human islets. j, Volcano plot showing differentially methylated sites (depicted in red) in EndoC-βH1 exposed or not to cytokines. Dotted lines 
indicate the threshold for methylation differences or significance using limma moderated t-test. k, Distribution of demethylated and stable CpGs according 
to different classes of open chromatin.
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Extended Data Fig. 4 | Deconstructing cytokine induced cis-regulatory networks in β cells. a, Gene Regulatory Network (GRN) derived from IREs and 
their putative target genes. Squares represent the IREs inferred TF binding sites (motifs logos and TF matches are shown on the right side) and the ellipses 
represent their putative target genes (see Methods). The size of the squares reflects the number of connections (edge count) while the gene node size 
reflects the log2 fold change of RNA expression after cytokine exposure. The resulting GRN is an interconnected scale-free network composed of 648 
nodes and 3,589 edges. Genes regulated exclusively by primed IREs are represented in blue while green depicts opening IREs regulated genes. Red denotes 
genes regulated by both types of IREs. In each of these three groups the representation of the hierarchy is based on the principle of network centrality 
where authoritative nodes are located more proximal to the core. b, Comparison between the degree distribution of the observed GRN (black triangles) 
and a random generated network (blue squares) having the same number of nodes and edges. The bell-shaped degree distribution of random graph 
denotes a statistically homogeneity in the degree of small and large nodes. In contrast, the observed network showed a high frequency of small degree 
nodes and a low frequency of highly connected nodes as is typical of a scale-free network. c, Bar plot of gene ontology biological process enrichment 
analysis. Gene-ontology analysis was performed using all target genes in the GRN. Functional enrichment analysis was performed by Metascape (http://
metascape.org). Only terms with P < 0.001 and with at least 3 enriched genes were considered as significant. Color is proportional to their P values.
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Extended Data Fig. 5 | 3D chromatin changes induced by exposure of human islets to pro-inflammatory cytokines. a, Violin plots showing the 
distribution of CHiCAGO scores of contacts, detected by promoter capture HiC experiments in untreated human islets24, between stable and induced 
enhancers and their target genes. SREs engage chromatin contacts with higher interaction scores compared to those detected for IREs. *** Wilcoxon 
test P < 0.001. b, c, d, Views of the 3D chromatin contacts of CIITA (b), SOCS1 (c) and RSAD2 (d) promoters obtained by UMI-4C performed in islets 
exposed or not to pro-inflammatory cytokines. In yellow we highlight those IREs that gain contacts with the up-regulated gene promoter. A heatmap 
under the 4C track represents the log10 odds ratio (OR) of the UMI-4C contacts difference in cytokine vs. control and a small black diamond on top of the 
contact heatmap indicates a significant difference in contacts between cytokine-treated and control samples (Chi-squared P < 0.05). ATAC-seq peaks are 
represented by rectangles, shaded from gray to green proportionally to the cytokine-induced H2K27ac log2 fold change observed at that site.
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Extended Data Fig. 6 | Cytokine-induced islet regulatory elements are enriched in T1D associated variants. a, EndoC-βH1 cytokine-induced regulatory 
elements (IREs) overlap more often than expected T1D associated variants while the opposite is true for T2D. EndoC-βH1 cytokine-invariant regulatory 
elements (SREs) are instead enriched for T2D, but not T1D associated variants. Each dot denotes the Varian Set Enrichment (VSE) score in IREs or 
SREs regions. Boxplot shows the enrichment distribution of the matched null permutated data sets. Red dots indicate that the difference is statistically 
significant as determined by VSE (Bonferroni adjusted P < 0.05). Box plot limits show upper and lower quartiles, whiskers extend to 1.5 times the 
interquartile range and the notch represents the confidence interval around the median. b-f, Representative regional plots of different T1D risk loci 
containing T1D variants overlapping IREs and up-regulated genes. R2 values are based on 1KG phase 3 EUR and the leading SNPs in the locus is represented 
by a diamond. If different leading variants are present in the same locus, their proxies are depicted in different colors. Yellow squares highlight those 
variants that overlap a human islet IRE. IREs are depicted as boxes, with the filling color corresponding to the H3K27ac log2 fold change. g, The IRE 
bearing the T1D associated variant rs78037977 is marked by the ENCODE ChromHMM classification as a ‘strong enhancer’ (orange) in other non β-cell 
lines (left). ENCODE ChromHMM classification in non β-cell lines for the IRE bearing the T1D associated variant rs193778. h, i, Allele-specific luciferase 
experiments for rs78037977 (h) and rs193778 (i) in untreated EndoC-βH1. ANOVA followed by Bonferroni correction * P < 0.05; ** P < 0.01. Bars represent 
mean ± sd.
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Extended Data Fig. 7 | Human islets and EndoC-βH1 Glucose-Stimulated Insulin Secretion (GSIS). GSIS was assessed, in pancreatic human islets (a) and 
EndoC-βH1 cells (b). In the case of EndoC-βH1 cells, the experiments were performed upon exposure or not to IFNγ (1000 U/ml) +IL1β (50U/ml) for 48 h. 
Data are mean plus range of four to eight independent experiments, and are expressed as the ratio between glucose stimulated and basal insulin secretion. 
*P < 0.05, **P < 0.01, ***P < 0.001, for the indicated comparisons (paired t test (a) or ANOVA followed by Bonferroni correction (b)). NT = Non treated.
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Extended Data Fig. 8 | ATAC-seq quality control. a, Agilent TapeStation profiles obtained by chromatin tagmentation of human islets and EndoC-βH1 
samples showing the laddering pattern of ATAC-seq libraries. The band sizes correspond to the expected nucleosomal pattern. *Notice that samples HI-19 
CTRL and CYT were used as examples to illustrate the expected fragment distribution pattern in ATAC-seq experiments in Raurell-Vila et al.52. b, Summary 
of per-replicate sequencing metrics, showing total library sizes, percentage of aligned reads, percentage of mitochondrial aligned reads, normalized strand 
cross-correlation coefficient (NSC, values significantly lower than 1.1 (<1.05) tend to have low signal to noise or few peaks) and relative strand cross-
correlation coefficient (RSC, values significantly lower than 1 (<0.8) tend to have low signal to noise). c, TSS enrichment over a 4 kb window centered on 
genes TSS compared to a set of genes randomized along the genome, showing the expected pattern of open chromatin centered on the TSS. d, Percentage 
of total reads found at called open chromatin peaks classified as distal (>2 kb from TSS) or promoters (≤2 kb from TSS) compared to a randomized set 
of peaks. e, UCSC views at islet-specific loci (NKX6.1, PDX1 and NEUROD1) showing the high reproducibility of ATAC-seq profiles among independent 
replicates.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection All commercial or open source code used in this analysis is referenced in the Methods section. All custom scripts are described in detail 
as well.

Data analysis All commercial or open source code used in this analysis is referenced in the Methods section. All custom scripts are described in detail 
as well.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Datasets for induced regulatory elements (IREs) are available for download and visualization at the Islet Regulome Browser (www.isletregulome.com). 
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Raw sequencing reads for the different high-throughput assays can be accessed at GEO with the following identifiers: GSE123404 (ATAC-seq), GSE133135 (ChIP-seq 
H3K27ac), GSE137136 (RNA-seq) and GSE136865 (UMI-4C). Raw proteomics data can be accessed at ProteomeXchange with the identifier PXD011902. 

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size was calculated in this study.

Data exclusions No data was excluded from this study.

Replication Methods to determine reproducibility between replicates are described in the Methods section.

Randomization Not applicable. All human islets used in this study came from de-identified cadaveric donors without previous history of glucose intolerance.

Blinding Not applicable. All human islets used in this study came from de-identified cadaveric donors without previous history of glucose intolerance.

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Rabbit polyclonal to Histone H3 (acetyl K27)  Abcam Cat#ab4729.

Validation The use of antibody for H3K27ac  in human islets for ChiP-Seq was validated in Pasquali et al 2014 (PMID: 24413736).

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) The human pancreatic beta cell lines EndoC-βH1 were generated and provided by Dr. R. Scharfmann, University of Paris, 
France, and described in J Clin Invest. 2014 May;124(5):2087-98. doi: 10.1172/JCI72674.

Authentication EndoC-βH1 was authenticated by comparing its epigenome and transcriptome to that of human islets (which contain about 
70% of β cells) and by testing their function (insulin release, expression of human beta cell markers).

Mycoplasma contamination All cell lines tested negative for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used.
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ChIP-seq
Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

- GSE123404 ATAC-seq 
- GSE133135 H3K27ac ChIP-seq 
- GSE137136 RNA-seq 
- GSE136865 UMI-4C 
-  PXD011902 Proteomics

Files in database submission -- Supplementary Tables: 
Supplementary Table 1. List of induced regulatory elements in EndoC- βH1 cells and annotation to their closest up-regulated 
gene. 
Supplementary Table 2. List of induced regulatory elements in human pancreatic islets and annotation to their closest up-
regulated gene 
 
-- Supplementary Data Sets: 
Supplementary Data Set 1. ATAC-seq peaks in EndoC-βH1. 
Supplementary Data Set 2. ATAC-seq peaks in human islets. 
Supplementary Data Set 3. H3K27ac ChIP-seq peaks in EndoC-βH1. 
Supplementary Data Set 4. H3K27ac ChIP-seq peaks in human islets.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates - 5 ATAC-seq assays per condition in EndoC-βH1. 
- 5 ATAC-seq assays per condition in human islets. 
- 4 H3K27ac ChIP-seq assays per condition in EndoC-βH1. 
- 4 H3K27ac ChIP-seq assays per condidtion in human islets. 
- 5 RNA-seq assays per condition in EndoC-βH1. 
- 5 RNA-seq assays per condition in human islets. 
- 5 850K Infinium MethylationEPIC Arrays per condition in EndoC-βH1. 
- 3 multiplex proteomic assays per condition in EndoC-βH1. 
- 5 human islets used in UMI-4C assays. 
- >=3 luciferase assays per condition and vector in EndoC-βH1.

Sequencing depth Sequencing depth for ATAC-seq, ChIP-seq and RNA-seq is provided in Supplementary Table 8. Sequencing depth for UMI-4C 
samples is provided in Supplementary Table 10.

Antibodies Rabbit polyclonal to Histone H3 (acetyl K27)  Abcam Cat#ab4729.

Peak calling parameters ATAC-seq peaks were called with MACS2 (version 2.1) callpeak using the following parameters “-q 0.05 --nomodel --shift 
-100 --extsize 200”. H3K27ac ChIP-seq peaks were identified with the same software using the following parameters “--
broad --broad-cutoff 0.1 --nomodel”. 

Data quality For both assays (ATAC-seq and ChIP-seq), peaks were called separately for each replicate  as a measure of quality control. 
Merged BAM files were then used to call peaks with Q-value > 0.05. Data quality of ATAC-seq samples is shown in detail in 
Supplementary Figure 7.

Software Reads were aligned using Bowtie 2 (version 2.3.4.1). Unaligned reads, reads mapping to ENCODE blacklist regions, to 
mitocondrial DNA or to non-autosomal chromosomes were discarded using samtools (version 1.8). Duplicates were 
removed with Picard MarkDuplicates (version 2.5.0). Peaks were called with MACS2 (version 2.1). Differential analysis was 
performed using DESeq2 (version 1.20.0).
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